Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không khó lắm nha bạn ^^
Ta có : \(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{cd}=201\overline{cd}\)(vì ab = 2.cd)
201 chia hết cho 67 => 201cd (có gạch đầu) chia hết cho 67 => abcd chia hết cho 67
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
\(1000a+100b+10c+d+100a+10b+c+100a+10b+d=4426\)
\(\Leftrightarrow1200a+120b+11c+2d=4426\)
\(\Rightarrow1200a< 4426\Rightarrow a\le3\)
Nếu \(a\le2\Rightarrow1200a+120b+11c+2d\le1200.2+9\left(120+11+2\right)=3597< 4426\left(ktm\right)\)
\(\Rightarrow2< a\le3\Rightarrow a=3\)
\(\Rightarrow120b+11c+2d=4426-1200.3=826\)
- Nếu \(b\ge7\Rightarrow120b\ge840>826\left(ktm\right)\) \(\Rightarrow b< 7\)
Nếu \(b\le5\Rightarrow120b+11c+2d\le120.5+9.\left(11+2\right)=717< 826\left(ktm\right)\)
\(\Rightarrow5< b< 7\Rightarrow b=6\)
\(\Rightarrow11c+2d=826-120.6=106\)
Lý luận tương tự ta được \(c>7\)
Mà \(2d\) và \(106\) chẵn \(\Rightarrow c\) chẵn \(\Rightarrow c=8\Rightarrow d=9\)
Vậy số cần tìm là \(3689\)
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
Tìm các số chính phương \(\overline{abcd},\overline{dcba}\) biết \(\overline{dcba}⋮\overline{abcd}\)
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
Đề bài sai rồi bạn ơi
Thế ak, vậy để mình hỏi lại đề