Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi 24p= 2/5 giờ, 18p=3/10 giờ
gọi độ dài quãng đường AB là x (km) (x>0)
thời gian xe dự định đi từ A đến B là: x/50 ( giờ)
độ dài quãng đường đầu xe đi được là : 50. 2/5= 20 (km/h)
=> độ dài quãng đường còn lại là x-20(km/h)
thời gian đi đoạn đường xấu lúc sau là : (x-20)/40 ( giờ)
ta có phương trình: 2/5 + (x-20)/40= x/50 + 3/10
<=> ...<=> x =80( km)(thỏa mãn0
vậy quãng đường AB dài 80km
Bài 24:
Gọi x(km/h) và y(h) lần lượt là vận tốc và thời gian ô tô ban đầu dự định đi từ A đến B(Điều kiện: x>0; y>0)
Độ dài quãng đường AB là: xy(km)
Vì khi vận tốc ô tô tăng thêm 10km/h thì đến B sớm hơn 30 phút so với dự định nên ta có phương trình:
\(\left(x+10\right)\left(y-\dfrac{1}{2}\right)=xy\)
\(\Leftrightarrow xy-\dfrac{1}{2}x+10y-5=xy\)
\(\Leftrightarrow xy-\dfrac{1}{2}x+10y-5-xy=0\)
\(\Leftrightarrow\dfrac{-1}{2}x+10y=5\)(1)
Vì khi vận tốc ô tô giảm đi 5km/h thì đến B muộn 20 phút so với dự định nên ta có phương trình:
\(\left(x-5\right)\left(y+\dfrac{1}{3}\right)=xy\)
\(\Leftrightarrow xy+\dfrac{1}{3}x-5y-\dfrac{5}{3}=xy\)
\(\Leftrightarrow xy+\dfrac{1}{3}x-5y-\dfrac{5}{3}-xy=0\)
\(\Leftrightarrow\dfrac{1}{3}x-5y=\dfrac{5}{3}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{-1}{2}x+10y=5\\\dfrac{1}{3}x-5y=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{6}x+\dfrac{10}{3}y=\dfrac{5}{3}\\\dfrac{1}{6}x-\dfrac{5}{2}y=\dfrac{5}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{6}y=\dfrac{5}{6}\\\dfrac{1}{3}x-5y=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{3}x=\dfrac{5}{3}+5y=\dfrac{5}{3}+5=\dfrac{20}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=1\end{matrix}\right.\)(thỏa ĐK)
Độ dài quãng đường AB là:
\(xy=20\cdot1=20\left(km\right)\)
Vậy: Quãng đường AB dài 20km
Bài 25:
Gọi vận tốc xe đi từ A và xe đi từ B lần lượt là a, b(km/h; a>10; b>0; a>b)
Mỗi giờ xe đi từ A đi nhanh hơn xe kia 10km => a - b = 10 (1)
Sau 5 giờ xe đi từ A đi được: 5a (km)
Sau 5 giờ xe đi từ B đi được: 5b (km)
Nếu đi ngược chiều, 2 xe gặp nhau sau 5 giờ nên ta có: 5a+5b=350 (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-b=10\\5a+5b=350\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}5a-5b=50\\5a+5b=350\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}10a=400\\a-b=10\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=40\\b=30\end{matrix}\right.\) (tm)
Vậy vận tốc của xe đi từ A và xe đi từ B lần lượt là 40km/h và 30km/h
Gọi vận tốc dự định là x
Thời gian dự định là 90/x
Theo đề, ta có: \(\dfrac{30}{x}+\dfrac{60}{x+6}+\dfrac{1}{3}=\dfrac{90}{x}\)
=>\(\dfrac{-60}{x}+\dfrac{60}{x+6}=\dfrac{-1}{3}\)
=>\(\dfrac{-60x-360+60x}{x^2+6x}=\dfrac{-1}{3}\)
=>-x^2-6x=-1080
=>x^2+6x-1080=0
=>x=30
Gọi quãng đường AB là x(x>0)
Thời gian dự định của ô tô là : \(\dfrac{x}{60}\)(giờ)
Vì khi khời hành xe đi được nửa giờ với vận tốc dự định nên xe đi được quãng đường là:60.\(\dfrac{1}{2}\)=30(km)
Vận tốc xe đi trên quãng đường xấu là: 60-10=50(km)
quãng đường xấu dài là :x-30(km)
Thời gian xe đi trên quãng đường xấu là:\(\dfrac{x-30}{50}\)
Đổi 20 phút =\(\dfrac{1}{3}\) giờ
Theo đề ta có phương trình: \(\dfrac{1}{2}\)+\(\dfrac{x-30}{50}\)=\(\dfrac{x}{60}\)+\(\dfrac{1}{3}\)
⇔\(\dfrac{x}{60}\)-\(\dfrac{x-30}{50}\)=\(\dfrac{1}{3}\)-\(\dfrac{1}{2}\)
⇔60x-10800=-3000
⇔60x=7800
⇔x=130(TM)
Vậy quãng đường AB dài 130 km
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
bạn ghi lại đề nhé