K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

\(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\)

vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

vậy MIN =  5 . dấu "=" xảy ra khi và chỉ khi  x = 2 

7 tháng 10 2017

 1. a) P= x^2-2x+5=(x^2-2x+1)+4=(x-1)^2 +4 
Nhận xét: (x-1)^2 >=0 (do bình phương của 1 số luôn không âm) 
=> (x-1)^2+4>=4(cộng cả 2 vế với 4) 
hay P>= 4 dấu bằng xảy ra khi và chỉ khi x=1 
vậy Pmin =4 <=> x=1 
b) B= x^2+y^2-x+6y+10=(x^2-2.1/2.x+1/4)+(y^2-2... 
Nhận xét: (x-1/2)^2>=0 (do bình phương của 1 số luôn không âm) 
(y-3)^2>=0 (do bình phương của 1 số luôn không âm) 
=>(x-1/2)^2+(y-3)^2>=0 
=>(x-1/2)^2+(y-3)^2+3/4>=3/4 
hay B>=3/4 dấu bằng xảy ra <=> x=1/2;y=3 
vậy Bmin =3/4 <=>x=1/2,y=3 
2. a) A= -x^2+4x+3=-(x^2-2.2.x-3)=-(x^2-2.2.x+4-7... 
nhận xét:(x-2)^2>=0 (do bình phương của 1 số luôn không âm) 
=>-(x-2)^2<=0 
=>-(x-2)^2+7<=7 
hay A<=7 dấu bằng xảy ra khi và chỉ khi x=2 
vậy A max =7 <=>x=2 
b)B=x-x^2=-(x^2-x)=-(x^2-2.x.1/2+1/4-1/4... 
nhận xét tương tự thì B<=1/4 vậy B max =1/4 <=>x=1/2 
c)C=2x-2x^2-5=-2(x^2-x+5/2)=-2(x^2-2.x.1... 
 

5 tháng 11 2016

bài 1:

Ta thấy: \(\left(3x+9\right)^2\ge0\)

\(\Rightarrow2\left(3x+9\right)^2\ge0\)

\(\Rightarrow2\left(3x+9\right)^2+5\ge5\)

Dấu = khi \(3x+9=0\Leftrightarrow3x=-9\Leftrightarrow x=-3\)

Vậy x=-3 thì bt đạt GTNN

6 tháng 11 2016

bài 2 :

hạng tử tự do là 5

5 tháng 11 2016

Bài 1:

\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)

\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)

\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)

Bài 2:

\(P=\left|2-x\right|+2y^4+5\)

Ta thấy:

\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)

\(\Rightarrow\left|2-x\right|+2y^4\ge0\)

\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)

\(\Rightarrow P\ge5\)

Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)

Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)

 

5 tháng 11 2016

Bài 4:

2(2x+x2)-x2(x+2)+(x3-4x+13)

=2x2+4x-x3-2x2+x3-4x+13

=(2x2-2x2)+(4x-4x)-(-x3+x3)+13

=13

28 tháng 10 2016

1) \(A=x^2-4x+1\)

\(A=x^2-4x+4-3\)

\(A=\left(x^2-4x+4\right)-3\)

\(A=\left(x-2\right)^2-3\)

Ta có: \(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x

Vậy MIinA = -3 khi x = 2

2) \(B=-x^2+13x+2012\)

\(B=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)

\(B=-\left(x^2-13+\frac{169}{4}\right)+\left(\frac{169}{4}+2012\right)\)

\(B=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)

Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\) với mọi x

\(-\left(x-\frac{13}{2}\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Vây \(Max\left(B\right)=\frac{8217}{4}\) khi \(x=\frac{13}{2}\)

 

 

 

21 tháng 11 2017

B= 2x^2 -6x + 8

= 2(x^2 - 3x) + 8

= 2(x^2 - 2.3/2 .x +(3/2)^2 - 9/4 ) +8

= 2(x-3/2)^2 -9/2 + 8

= 2(x - 3/2)^2 +7/2 >= 7/2 mọi x

( vì (x - 3/2)^2 >= 0 v x)

Vậy Min B= 7/2 <=> x-3/2 =0 <=> x = 3/2

21 tháng 11 2017

cam on ạ

2 tháng 1 2018

giải giúp mình nhé

2 tháng 1 2018

Mk nghĩ bn nên ghi biểu thức lại rõ ràng đi, chứ như zầy khó nhìn quá, mk k hiểu

24 tháng 2 2020

1) \(P=x^2+3x+3=\left(x^2+2.x\cdot\frac{3}{2}+\frac{9}{4}\right)+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{3}{2}\)

2) \(Q=\left(x+y\right)^2+y^2-2\ge-2\)

Dấu "=" xảy ra khi x=0,y=0

12 tháng 8 2021

\(P=x^2+3x+3\)

\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow P_{min}=\frac{3}{4}\Leftrightarrow x=-\frac{3}{2}\)

\(Q=x^2+2y^2+2xy-2\)

\(=x^2+y^2+y^2+2xy-2\)

\(=\left(x^2+2xy+y^2\right)+y^2-2\)

\(=\left(x+y\right)^2+y^2-2\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\y^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+y^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+y^2-2\ge-2\forall x,y\)

\(\Rightarrow Q_{min}=-2\Leftrightarrow x=y=0\)