K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

a)(x+y+z)2 - 2(x+y+z)(x+y)+(x+y)2

=[(x+y+z)-(x-y)]2

=(x+y+z-x-y)2

=z2

b) (a+b)3 - (a - b)3 - 2b3

=[(a+b)-(a-b)][(a+b)2+(a+b)(a-b)+(a-b)2]-2b3

=(a+b-a+b)(a2+2ab+b2+a2-b2+a2-2ab+b2)-2b3

=2b(3a2+b2)-2b3

=6a2b+2b3-2b3

=6a2b

c) (a + b)2 - (a - b)2=[a+b+(a-b)][a+b-(a-b)]=(a+b+a-b)(a+b-a+b)

                         =2a.2b=4ab

11 tháng 7 2015

Trường hợp không nghĩ ra cách nào hay và gọn để làm, ta đặt

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=m\)

\(\Rightarrow x=am;\text{ }y=bm;\text{ }z=cm\)

\(P=\frac{a^2m^2+b^2m^2+c^2m^2}{\left(a^2m+b^2m+c^2m\right)^2}=\frac{\left(a^2+b^2+c^2\right)m^2}{\left(a^2+b^2+c^2\right)^2.m^2}=\frac{a^2+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}=\frac{1}{a^2+b^2+c^2}\)

3 tháng 10 2021

a) Ta có: (a+b)2 - (a-b)2

        = (a+b+a-b)(a+b-a+b)

        =    2a.2b

        = 4ab

b) Ta có: (a+b)3 - (a-b)- 2b3

        = a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3 - 2b3

        = 6a2b

c) Ta có: (x+y+z)2 - 2(x+y+z)(x+y) + (x+y)2

        = (x+y+z-x-y)2

          = z2

23 tháng 10 2016

A = x(x + y)2 - x(x - y)

= x[(x + y)2 - (x - y)]

B = (2x - 3)(4x2 + 6x + 9) - (2x + 3)(4x2 - 6x + 9)

= 8x3 - 27 - 8x3 - 27

= - 54

C = (x + 3)3 - (x - 3)3 - 18x2 - 18

= x3 + 9x2 + 27x + 27 - x3 + 9x2 - 27x + 27 - 18x2 - 18

= 36

9 tháng 2 2017

Bài 3a)

\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)

Bạn tách ra đi bạn

7 tháng 10 2017

chỉ cần dùng hằng đẳng thức khai triển ra thôi

28 tháng 12 2016

1) tách 2008x^2 thành 2007x^2 + x rồi nhóm mấy cái có hệ số là 2007 thành 1 nhóm

b) áp dụng hằng đẳng thức

2) từ a+b+c => a+c = -b

mà a-b/c +1 = a+c-b/c

làm tương tự với mấy phân số còn lại là ra dpcm

28 tháng 12 2016

B1b  áp dụng hdt j z

Trog những HĐT trên chắc là

bn đánh máy thiếu số mũ nhỉ??

Phải ko

23 tháng 9 2019

1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)

2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)

5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)

6. Áp dụng các hằng đẳng thức đáng nhớ