Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi tuổi bố là a ; tuổi con là b (a;b \(\inℕ^∗\) )
Theo bài ra ta có : a = 4b (1)
Vì sau 5 năm tuổi bố gấp 3 lần tuổi con nên ta có :
a + 5 = 3(b+ 5)
=> a + 5 = 3b + 15
=> a - 3b = 10 (2)
Thay (1) vào (2) ta có :
4b - 3b = 10
=> b = 10
Khi đó a = 40
Vậy tuổi con là 10 tuổi ; tuổi bố là 40 tuổi
Đáp án C
* Phân tích:
Ta luôn có: Quãng đường = vận tốc . thời gian
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48km.
Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).
Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).
Quãng đường BC | Vận tốc | Thời gian | |
Dự tính | x | 48 | |
Thực tế | x | 48 + 6 = 54 |
Ta có phương trình:
* Giải:
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ
⇒ SAC = 48.1 = 48 (km).
Gọi quãng đường BC dài là x (km; x > 0).
Vận tốc dự tính đi trên BC là: 48 km/h
⇒ Thời gian dự tính đi quãng đường BC hết: (giờ).
Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).
⇒ Thời gian thực tế ô tô đi quãng đường BC là: (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).
Do đó ta có phương trình:
⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).
Vậy quãng đường AB là:
SAB = SAC + SBC = 48 + 72 = 120 (km).
* Phân tích:
Ta luôn có: Quãng đường = vận tốc . thời gian
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h trong 1h nên SAC = 48km.
Xét trên quãng đường BC, để đến B đúng thời gian đã định ô tô đi với vận tốc 48 + 6 = 54 (km/h).
Vì ô tô đến B đúng thời gian đã định nên thời gian thực tế ô tô đi từ B đến C ít hơn thời gian dự định là 10 phút = 1/6 giờ (là thời gian chờ tàu hỏa).
Quãng đường BC | Vận tốc | Thời gian | |
Dự tính | x | 48 | |
Thực tế | x | 48 + 6 = 54 |
Ta có phương trình:
* Giải:
Gọi C là địa điểm ô tô gặp tàu hỏa.
Quãng đường AC ô tô đi với vận tốc 48km/h và đi trong 1 giờ
⇒ SAC = 48.1 = 48 (km).
Gọi quãng đường BC dài là x (km; x > 0).
Vận tốc dự tính đi trên BC là: 48 km/h
⇒ Thời gian dự tính đi quãng đường BC hết: (giờ).
Thực tế ô tô đi quãng đường BC với vận tốc bằng 48 + 6 = 54 (km/h).
⇒ Thời gian thực tế ô tô đi quãng đường BC là: (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian ô tô đợi tàu hỏa là 10 phút = 1/6 (giờ).
Do đó ta có phương trình:
⇔ x = 72 (thỏa mãn) nên quãng đường BC là 72 (km).
Vậy quãng đường AB là:
SAB = SAC + SBC = 48 + 72 = 120 (km).
1) gọi x là tuổi con năm nay nên tuổi mẹ năm nay là 3x
13 năm nữa thì tuổi con là 13 + x, tuổi mẹ là 2(13 + x)
ta có pt sau: 2(13 + x) - 3x = 13
26 + 2x - 3x = 13
x = 13
vậy Phương 13 tuổi
2) Gọi số cần tìm là : ab
Khi đó: b gấp đôi a
Ta có: ab + 370 = a1b
<=> 10a + b + 370 = 100a + 10 + b
=> b - b + 370 - 10 = 100a - 10a
=> 360 = 90a
=> a = 360 : 90
=> a = 4
Vì đầu bài bài cho b gấp đổi a
=> b = 4 x 2
=> b = 8
Vậy số ban đầu là 48
Gọi số tuổi hiện nay của Phương là x (tuổi) và x>0
Khi đó: Số tuổi của mẹ Phương hiện nay là 3x (tuổi)
Số tuổi của Phương 13 năm nữa là x + 13 (tuổi)
Số tuổi mẹ Phương 13 năm nữa là (x + 13)2 (tuổi)
Theo đề bài, ta có phương trình là:
3x + 13 = (x + 13)2
⇔⇔ 3x + 13 = 2x + 26
⇔⇔ 3x - 2x = 26 - 13
⇔⇔ x = 13
Vậy tuổi của Phương hiện nay là 13 tuổi.
Gọi chữ số hàng chục là x (x ∈∈ N, 0 < x ≤≤ 9)
Khi đó chữ số hàng chục là 2x
Số đã cho được viết thành 10x + 2x
Khi xen chữ số 1 vào giữa thì chữ số hàng chục x trở thành chữ số hàng trăm, 1 là chữ số hàng chục và chữ số hàng đơn vị là 2x, ta được số mới như sau:
100x + 10.1 + 2x
Theo đề số mới lớn hơn số ban đầu 370 nên ta có phương trình:
100x +10 + 2x - (10x + 2x) = 370
<=> 100x + 10 + 2x - 10x - 2x = 370 <=> 90x = 360 <=> x = 4
Vậy số cần tìm là 48.
Bài 1:
Đổi 10 phút thành 1/6 giờ
Thời gian đi dự định: $\frac{AB}{48}$ (h)
Thời gian đi thực tế: $1+\frac{1}{6}+\frac{AB-48}{48+6}$
$=\frac{7}{6}+\frac{AB-48}{54}$ (h)
Ta có: $\frac{AB}{48}=\frac{7}{6}+\frac{AB-48}{54}$
$\Leftrightarrow \frac{AB}{432}=\frac{5}{18}$
$\Rightarrow AB=120$ (km)
Bài 2:
Đổi 1h40 phút thành $\frac{5}{3}$ giờ, đổi 20 phút thành $\frac{1}{3}$ giờ
Thời gian dự định đi: $\frac{AB}{12}$ (giờ)
Thời gian thực tế: \(\frac{AB}{3.12}+\frac{1}{3}+\frac{2AB}{3.36}=\frac{5AB}{108}+\frac{1}{3}\) (giờ)
Theo bài ra:
$\frac{5AB}{108}+\frac{1}{3}+\frac{5}{3}=\frac{AB}{12}$
$\Leftrightarrow AB=54$ (km)
Giống câu hỏi của mk nhưng mk k bt làm ahiuhiu. Ban nào giúp mk vs
Mình trình bày nè!
Gọi t là thời gian người đó đi từ A đến B
Ta có phương trình:
48t= 48+54(t-1-1/6)
Từ phương trình trên bạn sẽ tính được thời gian là 2.5(h).
Từ đó bạn sẽ dễ dàng tính được quãng đường AB bằng 120km
:3
Đổi 10 p = \(\dfrac{1}{6}h\)
Gọi x (km) là độ dài quãng đường AB (x > 0)
Đoạn đường đi trong 1 h đầu là 48 km
Đoạn đường còn lại là x - 48 (km)
Thời gian dự định đi từ điểm bị tàu hỏa chắn đường đến B là: \(t_1=\dfrac{x-48}{48}\) (h)
Thời gian thực tê đi từ điểm bị tàu hỏa chắn đường đến B là \(t_2=\dfrac{x-48}{48+6}=\dfrac{x-48}{54}\) (h)
Vì ô tô bị tàu hỏa chắn đường trong 10p nên:
\(\dfrac{x-48}{48}-\dfrac{x-48}{54}=\dfrac{1}{6}\) (1)
Giải PT (1) <=> x = 120 (t/m ĐK)
Vậy quảng đường AB dài 120
P/s: Ko chắc nha