K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

4 tháng 12 2021

ousbdl

jvdajnvjl

nsdg

ouhqer

kgkrebvjdsjb

vq

wjkgb

Fbovafbeuonasf

Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2

Ta có tổng 3 số tự nhiên liên tiếp là:

a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3

20 tháng 12 2015

Gọi d là ước chung của (m,mn+8) vì m lẻ => d lẻ.

Ta có m = kd (vì d là ước của m) => mn + 8 = kdn + 8

--> khd + 8 chia hết cho d mà  khd chia hết cho d => 8 chia hết cho d --> d là ước của 8 do d lẻ => d = 1.

vậy m và mn + 8 là nguyên tố cùng nhau

20 tháng 12 2015

1.n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 

 

3 tháng 10 2017

Bài 2: 

a. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2

Theo bài cho, ta có: n + (n+1) + (n+2) = 3n + 3

Vì 3 chia hết cho 3 => 3n chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

b. Chứng minh tương tự câu a

c. Gọi 3 số tự nhiên liên tiếp là: n, n+1, n+2 (n thuộc N)

Xét 3 trường hợp:

TH1: n chia cho 3 dư 0 

=> n chia hết cho 3

TH2: n chia cho 3 dư 1 

Có: n = 3q+1

n + 2 = 3q+1+2

n+2 = 3q + 3

n+2 = 3q + 3.1 

n+2 = 3.(q+1)

=> n+2 chia hết cho 3 

TH3: n chia cho 3 dư 2

Có: n = 3q+2

n + 1 = 3q+2+1

n+ 1 = 3q + 3

n+1 = 3q + 3.1

n+1 = 3.(q+1)

=> n+1 chia hết cho 3 

Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3

19 tháng 7 2017

Gọi 4 số đó lần lượt là: a,b,c,d

6 tháng 1 2021

a+(a+1)+(a+2)

  =3a+3 chia hết cho 3

Bài 1: 

a: \(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^9\right)⋮13\)

b: \(C=\left(1+3^1+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)

\(=40\cdot\left(1+3^4+3^8\right)⋮40\)