K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9

đã 10 năm ko nhận đc đáp án và vẫn mãi ở phần câu hỏi chưa trl

h tui giải thoát cho nhé :)

4 tháng 8 2023

Để chứng minh điều này, ta sẽ sử dụng tính chất của đường trung tuyến. Theo tính chất này, đường trung tuyến chia một tam giác thành hai tam giác có diện tích bằng nhau.

Vì vậy, ta có:
Diện tích tam giác AMN = Diện tích tam giác AMP
Diện tích tam giác BNP = Diện tích tam giác BMP

Ta cũng biết rằng M, N, P lần lượt là trung điểm của các cạnh AC, BD và BE. Do đó, ta có:
AM = MC, BN = ND, BP = PE

Từ đó, ta có thể suy ra:
Diện tích tam giác AMN = Diện tích tam giác AMP = 1/2 * Diện tích tam giác ABC
Diện tích tam giác BNP = Diện tích tam giác BMP = 1/2 * Diện tích tam giác ABC

Vì diện tích của hai tam giác AMN và BNP bằng nhau, ta có thể kết luận rằng tam giác MNP là tam giác đều.

Vậy, tam giác MNP là tam giác đều.

4 tháng 8 2023

giúp mik với

25 tháng 8 2018

câu a bài 2 nhá

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ

7 tháng 8 2017

A C B D E M N P

1) 

- Xét tam giác EDC có : 

+ PE = PD (GT)

+ NE = NC (GT)

=>  PN là đường trung bình của tam giác EDC => \(PN=\frac{1}{2}CD\)  (1)

-Xét tam giác EAC có: 

+ NE = NC (GT )

+ ME = MA (GT )

=> NM là đường trung bình của tam giác EAC => \(MN=\frac{1}{2}AC\)  (2)

- Xét tam giác EAD có : 

+ ME = MA (GT)

+ PE =PD (GT )

=> MP là đường trung bình của tam giác EAD => \(MP=\frac{1}{2}AD\)  (3) 

-Từ 1 , 2 , 3 và AD = DC = CA (GT)

=> PN = NM = MP hay tam giác MNP đều

5 tháng 8 2017

A B C D E M N P K

1) Vì P là trung điểm của DE ; N là trung điểm của EC => PN là đường trung bình của tam giác EDC

=> \(PN=\frac{1}{2}DC\)(1)

Vì M là trung điểm của AE ; N là trung điểm của EC => MN là đường trung bình của tam giác AEC

=> \(MN=\frac{1}{2}AC\) (2)

Vì P là trung điểm của DE ; M là trung điểm của AE => PM là đường trung bình của tam giác ADE

=> \(PM=\frac{1}{2}AD\)(3)

Mà \(\frac{1}{2}AD=\frac{1}{2}DC=\frac{1}{2}AC\) Nên từ (1) ; (2) \(\Rightarrow MN=NP=MP\) Hay tam MNP đều (đpcm)

2) Đang nghĩ