Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé:
a) Từ E kẻ đường thẳng vuông góc với BC cắt BC tại M
Ta có: góc EBM + 900 + ABH = 1800
=> EBM + ABM = 900 ( 1 )
Mặt khác: trong tam giác BAH vuông tai H, có: BAH + ABH = 900 ( 2 )
Từ ( 1 ) và ( 2 ) ta có: EBM = BAH => 1800 - EBM = 1800 - BAH => EBC = BAI
Xét tam giác EBC và tam giác BAI, có :
EB = AB
EBC = BAI
BC = AI
Suy ra: tam giác EBC = BAI ( c.g.c )
=> PIQ = QCH ( 2 góc tương ứng )
b) Do tam giác EBC = tam giác BAI nên BI = EC ( 2 cạnh tương ứng )
Xét tam giác IPQ có: PIQ + IQP + IPQ = 1800 (3)
Xét tam giác QHC có: HQC + QCH + CHQ = 1800 (4)
=> PIQ + IQP + IPQ = HQC + QCH + CHQ
Mà PIQ = QCH
IQP = HQC ( 2 góc đối đỉnh )
=> IPQ = CHQ = 900
Vậy IB vuông góc với EC cắt nhau tại P
c) Nối I với C, điểm giao nhau của IC và BF là T
Tương tự: câu a và câu b thì IC cũng vuông góc với BF
Trong tam giác IBC có: 3 đường cao là: IH, CP, BT => 3 cạnh này cắt nhau tại 1 điểm
=> Ba đường thẳng AH, CE, BF đồng quy
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
a) Ta có AB = AC => ABC là tg cân ( cân tại A)
Xét \(\Delta ABD\)Và \(\Delta ACD\)
\(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )
\(AC=AB\)
AD LÀ CẠNH CHUNG
=> 2 tam giác = nhau ( c.g.c )
b) Ta có Ay//BC
=> \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )
Mà \(\widehat{ACB}=\widehat{ABC}\)
=> \(\widehat{yAC}=\widehat{ABC}\)
c) Ta có tg ABC cân
=> AD là đg phân giác cũng là đường cao
=> \(AD\perp BC\)
MÀ \(Cx\perp BC\)
=> AD//Cx
d) Ta có Ay ( AK) //BC
Mà \(\widehat{ADC}=90^O\)
=> \(DA\perp Ay\)
Tứ giác AKCD là hình chữ nhâtk
mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )
=> I là trung điểm của DK