Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : 2016 chia hết cho 4 mà lũy thừa
=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )
Vậy chữ số tận cùng của \(1944^{2016}\)là 6
b, Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)
mà : 324 đồng dư với -1 (mod 25 )
=> \(324^{2016}\)đồng dư với \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )
và : \(6^{2016}\)\(=6^{2015}.6\)
Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)
Có : 7776 đồng dư với 1 ( mod 25 )
=> \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )
Có : 6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)chia cho 25 dư 6
=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4
Ta có : 25.k + 6 chia hết cho 4
24.k + k + 2 + 4 chia hết cho 4
=> k + 2 chia hết cho 4
=> k = 4.m - 2
Thay k = 4.m - 2 ta có :
\(1944^{2016}=\) 25. (4.m - 2 ) + 6
\(1944^{2016}=\)100 .m - 50 + 6
\(1944^{2016}=\)100.m - 44 = .........00 - 44
\(1944^{2016}=\)...........56
Vậy hai chữ số tận cùng của \(1944^{2016}=\)56
Ai thấy mik làm đúng thì ủng hộ nha !!!
Cảm ơn các bạn nhiều
Nhìu lắm thưa bạn Shinichi Kudo !!! Ai thích Conan thì kb vs mk nha !!!
cách chư số tận cùng khi nâng lên lũy thừa có thể là :0;1;2;4;5;6;8;9
Vd:30=1
102=100
82=64
...
Phần I
........0 mũ m = .....0 (m khác 0 )
.........1 mũ m = ........1
..........5 mũ m = ........5 ( m khác 0 )
...........6 mũ m = ..........6 ( m khác 0 )
cái này minh chỉ giải dc câu 1 thôi nhé.
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 -> bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.
Bài toán 1 : Tìm chữ số tận cùng của các số :
a) 799 b) 141414 c) 4567
Lời giải :
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
Bài toán 2 : Tìm chữ số tận cùng của tổng S = 21 + 35 + 49 + … + 20048009.
Lời giải :
Nhận xét : Mọi lũy thừa trong S đều có số mũ khi chia cho 4 thì dư 1 (các lũy thừa đều có dạng n4(n - 2) + 1, n thuộc {2, 3, …, 2004}).
Theo tính chất 2, mọi lũy thừa trong S và các cơ số tương ứng đều có chữ số tận cùng giống nhau, bằng chữ số tận cùng của tổng :
(2 + 3 + … + 9) + 199.(1 + 2 + … + 9) + 1 + 2 + 3 + 4 = 200(1 + 2 + … + 9) + 9 = 9009.
Vậy chữ số tận cùng của tổng S là 9.
Từ tính chất 1 tiếp tục => tính chất 3.
Bài toán 3 : Tìm chữ số tận cùng của tổng T = 23 + 37 + 411 + … + 20048011.
Lời giải :
Nhận xét : Mọi lũy thừa trong T đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004}).
Theo tính chất 3 thì 23 có chữ số tận cùng là 8 ; 37 có chữ số tận cùng là 7 ; 411 có chữ số tận cùng là 4 ; …
Như vậy, tổng T có chữ số tận cùng bằng chữ số tận cùng của tổng : (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.
Vậy chữ số tận cùng của tổng T là 9.
* Trong một số bài toán khác, việc tìm chữ số tận cùng dẫn đến lời giải khá độc đáo.
Bài toán 4 : Tồn tại hay không số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Lời giải : 19952000 tận cùng bởi chữ số 5 nên chia hết cho 5. Vì vậy, ta đặt vấn đề là liệu n2 + n + 1 có chia hết cho 5 không ?
Ta có n2 + n = n(n + 1), là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng của n2 + n chỉ có thể là 0 ; 2 ; 6 => n2 + n + 1 chỉ có thể tận cùng là 1 ; 3 ; 7 => n2 + n + 1 không chia hết cho 5.
Vậy không tồn tại số tự nhiên n sao cho n2 + n + 1 chia hết cho 19952000.
Sử dụng tính chất “một số chính phương chỉ có thể tận cùng bởi các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9”, ta có thể giải được bài toán sau :
Bài toán 5 : Chứng minh rằng các tổng sau không thể là số chính phương :
a) M = 19k + 5k + 1995k + 1996k (với k chẵn)
b) N = 20042004k + 2003
Bài toán 6 : Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng : p8n +3.p4n - 4 chia hết cho 5.
* Các bạn hãy giải các bài tập sau :
Bài 1 : Tìm số dư của các phép chia :
a) 21 + 35 + 49 + … + 20038005 cho 5
b) 23 + 37 + 411 + … + 20038007 cho 5
Bài 2 : Tìm chữ số tận cùng của X, Y :
X = 22 + 36 + 410 + … + 20048010
Y = 28 + 312 + 416 + … + 20048016
Bài 3 : Chứng minh rằng chữ số tận cùng của hai tổng sau giống nhau :
U = 21 + 35 + 49 + … + 20058013
V = 23 + 37 + 411 + … + 20058015
Bài 4 : Chứng minh rằng không tồn tại các số tự nhiên x, y, z thỏa mãn :
19x + 5y + 1980z = 1975430 + 200
Tim so tu nhien n thoa man bieu thuc :n^2+n+1 chia het cho 1995^1996
Giup minh voi minh dang can gap
\(7^{1995}=7^{1992+3}=7^{1992}.7^3=7^{498.4}.\left(...3\right)=\left(...1\right)\left(...3\right)=\left(..3\right)\)
Nếu số là có chữ số tận cùng là 0,1,5,6 số mũ khác 0 thì chữ số tận cùng là 0,1,5,6 Còn nhiều nữa như tìm 2 chữ số tận cùng,...
tìm 1 chữ số tận cùng chỉ ít vậy thôi à.
bn có thể nêu thêm hk Lê Minh Vũ