K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

Violympic toán 9

11 tháng 10 2019

Thay x+y+z=2020 vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2020}\) có:

\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

<=>\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

<=>\(x^2y+xy^2+xyz+xyz+y^2z+yz^2+x^2z+xyz+xz^2=xyz\)

<=>\(xy\left(x+y\right)+z^2\left(x+y\right)+y^2z+x^2z+3xyz-xyz=0\)

<=>\(\left(x+y\right)\left(xy+z^2\right)+z\left(y^2+x^2+2xy\right)=0\)

<=>\(\left(x+y\right)\left(xy+z^2\right)+z\left(x+y\right)^2=0\)

<=>\(\left(x+y\right)\left(xy+z^2+xz+yz\right)=0\)

<=>\(\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=0\)

<=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

=> \(\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Tại x=-y => \(x^{2009}=-y^{2009}\)

<=>\(x^{2009}+y^{2009}\)=0

\(P=\left(x^{2009}+y^{2009}\right)\left(y^{2011}+z^{2011}\right)\left(z^{2013}+x^{2013}\right)=0\left(y^{2011}+z^{2011}\right)\left(z^{2013}+x^{2013}\right)=0\)

Tương tự các trường hợp kia cũng => P=0

Vậy P=0

18 tháng 5 2021

b) Áp dụng bđt Svac-xơ:

\(\dfrac{1}{x}+\dfrac{9}{y}+\dfrac{16}{z}\ge\dfrac{\left(1+3+4\right)^2}{x+y+z}\ge\dfrac{64}{4}=16>9\)

=> hpt vô nghiệm

c) Ở đây x,y,z là các số thực dương

Áp dụng cosi: \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{3}=1\)

 

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.

Áp dụng BĐT AM-GM:

$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$

Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:

$x^3=x^2+x+2$

$\Leftrightarrow x^3-x^2-x-2=0$

$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$

$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$

$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Lời giải:
$xy+yz+xz=\frac{1}{2}[(x+y+z)^2-(x^2+y^2+z^2)]=\frac{1}{2}(a^2-b^2)$

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}$

$\Rightarrow xyz=c(xy+yz+xz)=\frac{1}{2}c(a^2-b^2)$

Khi đó:

$P=(x+y+z)^3-3(x+y)(y+z)(x+z)$

$=(x+y+z)^3-3[(x+y+z)(xy+yz+xz)-xyz]=(x+y+z)^3-3(xy+yz+xz)(x+y+z)+3xyz$
$=a^3-\frac{3}{2}a(a^2-b^2)+\frac{3}{2}c(a^2-b^2)$

NV
20 tháng 3 2022

\(\left(x^3+1\right)\left(y^3+1\right)\left(z^3+1\right)=\dfrac{81}{64}x^3y^3z^3\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^2y^2z^2\)

\(\Leftrightarrow3xyz\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{81}{64}x^3y^3z^3\)

 \(\Rightarrow\left[{}\begin{matrix}xyz=0\\\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\end{matrix}\right.\)

Nếu \(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)=\dfrac{27}{64}x^2y^2z^2\) 

Ta có:

\(x^2-x+1=\dfrac{3}{4}x^2+\left(\dfrac{x}{2}-1\right)^2\ge\dfrac{3}{4}x^2\)

Tương tự: \(y^2-y+1\ge\dfrac{3}{4}y^2\) ; \(z^2-z+1\ge\dfrac{3}{4}z^2\)

Do các vế của các BĐT trên đều không âm, nhân vế với vế ta được:

\(\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right)\ge\dfrac{27}{64}x^2y^2z^2\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\) 

Thế vào  điều kiện \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=3xyz\) ko thỏa mãn (loại)

Vậy \(xyz=0\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Nếu $x=-y$ thì:

$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$

Nếu $y=-z$ thì:

$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$

Nếu $z=-x$ thì:

$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$