Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
1) a) 2a + 2b = 2(a + b) ;
b) 9a - 9b = 9(a - b) ;
c) 3a - 6b - 9c = 3(a - 2b - 3c)
d) ab - ac = a(b - c)
e) 5a - 10ax - 15a = -10a - 10ax = 10a(x + 1)
f) 3a(ax - 2ay + 4)
g) 5a2(x - y) + 10a(x - y)
= 5a(x - y)(a + 2)
2) ax + ay + bx + by
= a(x + y) + b(x + y)
= (a + b)(x + y)
b) a2 - 49 = (a - 7)(a + 7)
c) 9a2 - 1 = (3a - 1)(3a + 1)
d) \(\frac{1}{4}a^2-b^2=\left(\frac{1}{2}a-b\right)\left(\frac{1}{2}a+b\right)\)
e) x2 + 14x + 49 = (x + 7)2
f) 4x2 + 20x + 25 = (2x + 5)2
g) 4x4 + 20x2 + 25 = (2x2 + 5)2
h) 2x3 + 8x2 + 8x = 2x(x2 + 4x + 4) = 2x(x + 2)2
i) 2x3 + 16 = 2(x3 + 8) = 2(x + 2)(x2 - 2x + 4)
3) x2 + 4x + 3 = x2 + x + 3x + 3 = x(x + 1) + 3(x + 1) = (x + 1)(x + 3)
x2 + 7x + 10 = x2 + 2x + 5x + 10 = x(x + 2) + 5(x + 2) = (x + 2)(x + 5)
Các bạn giúp mk làm 5 bài này nhé. mk đang cần gấp. Thanks các bạn nhiều
Mk cần gấp 5 bài này trong hôm nay. Các bạn cố gắng giúp mk. Thanks
b) Bạn đã chứng minh được tứ giác EKFC là hình bình hành ở câu a, mà EF cắt CK tại I \(\Rightarrow\)I là trung điểm EF (tính chất hình bình hành)
\(\Rightarrow AI\)là trung tuyến của \(\Delta AEF\)
Mà \(\Delta AEF\)vuông tại A \(\Rightarrow AI=\frac{1}{2}EF\)(tính chất tam giác vuông)
Lại có \(EI=\frac{1}{2}EF\)do I là trung điểm của đoạn EF \(\Rightarrow AI=EI\left(=\frac{1}{2}EF\right)\)
Mặt khác \(BE\perp AF\), \(MI\perp AF\left(gt\right)\)\(\Rightarrow BE//MI\)(quan hệ từ vuông góc đến song song)
Mà tứ giác BEFD là hình bình hành \(\Rightarrow BD//EF\)(tính chất hình bình hành)
\(\Rightarrow BM//EI\)(vì \(M\in BD;I\in EF\))
Xét tứ giác BEIM có \(BE//MI\left(cmt\right);BM//EI\left(cmt\right)\)\(\Rightarrow\)Tứ giác BEIM là hình bình hành (định nghĩa)
\(\Rightarrow BM=EI\)(tính chất hình bình hành)
Mà \(AI=EI\left(cmt\right)\)\(\Rightarrow AI=BM\left(=EI\right)\left(đpcm\right)\)
c) Do tứ giác BEFD là hình bình hành \(\Rightarrow\hept{\begin{cases}BE//DF\\BE=DF\end{cases}}\)(tính chất hình bình hành)
Mà \(\hept{\begin{cases}BE\perp CF\\BE=CF\end{cases}}\left(gt\right)\Rightarrow\hept{\begin{cases}DF\perp CFtạiF\\DF=CF\end{cases}}\)\(\Rightarrow\)F nằm trên đường trung trực của đoạn CD và \(\Delta CDF\)vuông cân tại F
\(\Rightarrow\widehat{DCF}=45^0\)
\(\Delta ABC\)vuông cân tại A (gt) \(\Rightarrow\widehat{ACB}=45^0\)
\(\Rightarrow\widehat{BCD}=180^0-\widehat{ACB}-\widehat{DCF}=180^0-45^0-45^0=90^0\)
\(\Rightarrow\Delta BCD\)vuông tại C.
Xét hình thang BEFD (BE//DF) ta có I là trung điểm EF (cmt) và IM//BE (cmt) \(\Rightarrow\)M là trung điểm của đoạn BD
\(\Rightarrow\)CM là trung tuyến của \(\Delta BCD\)
Mặt khác \(\Delta BCD\)vuông tại C \(\Rightarrow CM=\frac{1}{2}BD\)(tính chát tam giác vuông)
Mà \(DM=\frac{1}{2}BD\)do M là trung điểm BD \(\Rightarrow DM=CM\left(=\frac{1}{2}BD\right)\)
\(\Rightarrow\)M nằm trên đường trung trực của đoạn CD.
Mà F cũng nằm trên đường trung trực của đoạn CD (cmt)
\(\Rightarrow\)MF là đường trung trực của đoạn CD \(\Rightarrow\)C đối xứng với D qua MF (đpcm)
c, là hằng đẳng thức nha bạn
(\(\sqrt{x}\)+\(\sqrt{2x}\))2=0
suy ra \(\sqrt{x}\)+\(\sqrt{2x}\)=0
\(\sqrt{x}\)=\(\sqrt{2x}\)
suy ra x=0
Bài 2: Tìm x:
a) \(3x^2\)\(-27x=0\)
\(< =>3x\left(x-9\right)=0\)
\(=>x=0\) hay \(x-9=0\)
\(=>x=0\) hay \(x=9\)
b. \(\sqrt{\frac{180}{5}}-\sqrt{\frac{48}{75}}=\sqrt{36}-\sqrt{\frac{16}{25}}=6-\frac{4}{5}=\frac{26}{5}\)
c) Ta có \(\Delta AHB\sim\Delta ADC(g.g)\) nên \(\dfrac{BH}{BA}=\dfrac{CD}{CA}\).
Lại có \(\dfrac{BI}{BH}=\dfrac{CN}{CD}\) nên \(\dfrac{BI}{BA}=\dfrac{CN}{CA}\).
Mà \(\widehat{IBA}=\widehat{NCA}\) nên \(\Delta IBA\sim\Delta NCA(c.g.c)\)
\(\Rightarrow \widehat{ANC}=\widehat{AIB}\)
\(\Rightarrow\widehat{AID}=\widehat{AND}\).
Mà \(\widehat{API}=\widehat{DPN}\) (đối đỉnh) nên \(\Delta API\sim\Delta DPN(g.g)\)
\(\Rightarrow\dfrac{PA}{PI}=\dfrac{PD}{PN}\).
Mà \(\widehat{APD}=\widehat{IPN}\) (đối đỉnh) nên \(\Delta APD\sim\Delta IPN(c.g.c)\)
\(\Rightarrow\widehat{PIN}=\widehat{PAD}\).
Ta có \(\widehat{AIN}=\widehat{AID}+\widehat{NID}=\widehat{NAD}+\widehat{AND}=90^o\) nên \(AI\perp NI\).