Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z.\)
\(\Leftrightarrow\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\) và \(x+y+z=147.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{147}{\frac{49}{12}}=36.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{\frac{3}{2}}=36\Rightarrow x=36.\frac{3}{2}=54\\\frac{y}{\frac{4}{3}}=36\Rightarrow y=36.\frac{4}{3}=48\\\frac{z}{\frac{5}{4}}=36\Rightarrow z=36.\frac{5}{4}=45\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(54;48;45\right).\)
Chúc bạn học tốt!
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
+)
+)
+)
Vậy bộ số l
à
Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{-3x+3}{-6}=\frac{-4y-12}{-16}=\frac{5z-25}{30}=\frac{-3x-4y+5z+3-12-25}{8}=2\)
\(\Rightarrow-3x+3=-12\Leftrightarrow-3x=-15\Leftrightarrow x=5\)
\(\Rightarrow-4y-12=-32\Leftrightarrow-4y=-20\Leftrightarrow y=5\)
\(\Rightarrow5z-25=60\Leftrightarrow z=17\)
\(\frac{x}{4}=\frac{y}{3};3y=5z\) và x + y + z = 75
Ta có: \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\3y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{3}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}\)
=> \(\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{9}\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x+y+z}{20+15+9}=\frac{75}{44}\)
=> \(\hept{\begin{cases}\frac{x}{20}=\frac{75}{44}\\\frac{y}{15}=\frac{75}{44}\\\frac{z}{9}=\frac{75}{44}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{375}{11}\\y=\frac{1125}{44}\\z=\frac{675}{44}\end{cases}}\)
\(3x=4y;2y=5z\)và x + y - z = 58
Ta có : \(\hept{\begin{cases}3x=4y\\2y=5z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{2}\end{cases}}\)
=> \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{2}\)
Từ \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\\\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\end{cases}\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{6}=\frac{x+y-z}{20+15-6}=\frac{58}{29}=2}\)
=> \(\hept{\begin{cases}\frac{x}{20}=2\\\frac{y}{15}=2\\\frac{z}{6}=2\end{cases}}\Rightarrow\hept{\begin{cases}x=40\\y=30\\z=12\end{cases}}\)
Lời giải:
Đặt $\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=a$
$\Rightarrow x=2a+1; y=4a-3; z=6a+5$
Thay vào điều kiện $5z-3x-4y=50$ thì:
$5(6a+5)-3(2a+1)-4(4a-3)=50$
$\Rightarrow 8a-16=0$
$\Rightarrow a=2$
Do đó:
$x=2a+1=2.2+1=5$
$y=4a-3=4.2-3=5$
$z=6a+5=6.2+5=17$
Đề là \(\dfrac{2}{3}x=\dfrac{3}{4}y=\dfrac{4}{5}z\) và \(x+y-z=57\)
hay \(\dfrac{2}{3x}=\dfrac{3}{4x}=\dfrac{4}{5z}\) \(x+y-z=57\)
Ta có: \(\dfrac{2}{3}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
mà x+y-z=57
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y-z}{\dfrac{3}{2}+\dfrac{4}{3}-\dfrac{5}{4}}=\dfrac{57}{\dfrac{19}{12}}=36\)
Do đó:
\(\left\{{}\begin{matrix}x=36\cdot\dfrac{3}{2}=54\\y=36\cdot\dfrac{4}{3}=48\\z=36\cdot\dfrac{5}{4}=45\end{matrix}\right.\)
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)