Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(=x^2+y^2+36\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Leftrightarrow x^2+y^2\ge0\)
\(\Leftrightarrow B=x^2+y^2+36\ge36\)
Dấu " = " khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow x=y=0\)
Vậy \(MIN_B=36\) khi x = y = 0
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(B=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(B=x^2+y^2+36\ge36\)
Vậy \(Bmin=36\Leftrightarrow x=y=0\)
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
1a) 8xy(8-12x+6x*x-x*x*x)
chú thích x*x là x bình phương
x*x*x là x lập phương
2. a) 3x (x-5)- (x-1)(2+3x)=30
3x*x-15x-2x-3x*x+2+3x=30
14x=28
x=2
b) (x+2)(x-3)-(x-2)(x+5)=0
x*x-3x+2x-6-x*x-5x+2x+10=0
2x=-4
x=-2
còn mấy bài còn lại mình không biết
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
Ta có : A = x(x + 1)(x + 2)(x + 3)
=> A = [x(x + 3)].[(x + 1)(x + 2)]
=> A = (x2 + 3x) . (x2 + 3x + 2)
Đặt a = x2 + 3x + 1
Khi đó A = (a - 1)(a + 1)
=> A = a2 - 1
=> A = x2 + 3x + 1 - 1
=> A = x2 + 3x
=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\)
\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)
Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)
Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)
Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
Đăng từng bài thôi nha bạn
Bài 1 : Năm nay mới lên lớp 8 -_-
Bài 2 :
\(a)\)
* Câu A :
\(A=x^2+4x-7\)
\(A=\left(x^2+4x+4\right)-11\)
\(A=\left(x+2\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé )
Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)
* Câu B :
\(B=2x^2-3x+5\)
\(2B=4x^2-6x+10\)
\(2B=\left(4x^2-6x+1\right)+9\)
\(2B=\left(2x-1\right)^2+9\ge9\)
\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)
* Câu C :
\(C=x^4-3x^2+1\)
\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)
\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)
Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)
Chúc bạn học tốt ~
Nhờ các bạn giúp. Mình cần gấp. Cảm ơn!
Bài 1; Cho biểu thức: B= (x2 +1)(y2 + 1) - (x+4)(x-4) - (y-5)(y+5)
a) CMR: B ≥42 với mọi giá trị của x và y
b) Tìm x và y để B= 42
Giải:
a) B = (x2 +1)(y2 + 1) - (x+4)(x-4) - (y-5)(y+5)
B = \(x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
B = \(x^2y^2+42\ge42\) với mọi x , y
b) Để B = 42 \(\Rightarrow\) x2y2 + 42 = 0 \(\Rightarrow\) x2y2 = 0 \(\Rightarrow\) x = y = 0
Bài 2:
a) Tìm GTNN của A= (x- 1)(x+ 2)(x+ 3)(x+6)
b) Tìm GTNN cuả B= 3xy(x+ 3y) - 2xy(x+4y) - x2(y-1) + y2(1-x) + 36
Giải:
a) A = (x-1)(x+2)(x+3)(x+6)
A = (x2 + 5x - 6)(x2 + 5x + 6)
A = ( x2 + 5x )2 - 36 \(\ge\) -36 với mọi x
Dấu " = " xảy ra khi x2 + 5x = 0
x ( x + 5 ) = 0
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
MinA = -36 khi và chỉ khi x = 0 hoặc x = -5
b) Chịu :))
Bài 1:
a) \(\left(x^2+1\right)\left(y^2+1\right)-\left(x+4\right)\left(x-4\right)-\left(y-5\right)\left(y+5\right)\)
\(=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
\(=x^2y^2+42\ge42\forall x\) (đpcm)
b) Để B = 42 thì \(x^2y^2+42=42\)
\(\Leftrightarrow x^2y^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)