K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

có ai biết câu này k. Chiều nay tui thi rồi

Tui cx hok pk

nhanh hộ mik vs.mai miik phải nộp bài r.giúp mik đi

16 tháng 9 2019

Ta có A=1+2+3+...+n=n.(n+1)/2

Vì n.(n+1) là tích 2 số tự nhiên liên tiếp nên chỉ có tận cùng là 0,2,6 nên A chỉ có tận cùng là 0,1,6,8,3,5.

Ta thấy :

36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7

<=> 36n+1 - k . 33n + 9 ⋮ 7

Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )

Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )

Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )

10 tháng 8 2020

Bài làm:

a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)

\(=-\frac{1}{5}x^6y^3z^3\)

b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:

\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)

10 tháng 8 2020

a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)

b) Với x = -1 ; y = -2 , z = 3

Thế vào ba đơn thức trên và đơn thức tích ta được :

\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)

\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)

\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)

\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)

19 tháng 12 2017

a b M N P Q

a)Kẻ NP

Ta có:

a//b

=>  MNP=NPQ(so le trong) 

Xét \(_{\Delta MPN}\) và \(\Delta QNP\) có:

MNP=NPQ( cmt)

NP là cạnh chung

MN=QP

=)\(\Delta MNP=\Delta QNP\)(C-g-C)(1)

=>MPN=QNP(hai cạnh tương ứng) 

Mà hai góc này ở vị trí so le trong => MP//NQ(dpcm)

b) Từ (1) => MP=NP(dpcm)

CHÚC BẠN HỌC TỐT!

19 tháng 12 2017

a) ta có a//b suy ra MN//PQ suy ra góc MNP = góc NPQ (hai góc so le trong)

xét tam giác MNP và tam giác QPN ta có 

MN=QP

góc MNP= góc QPN

NP:cạnh chung

suy ra tam giác MNP= tam giác QPN(c.g.c)

suy ra MP=NQ(hai cạnh tương ứng)

b)ta có tam giác MNP= tam giác QPN suy ra góc MPN=góc QNP(hai góc tương ứng)

mà hai góc này ở vị trí so le trong suy ra MP//NQ(đpcm)