Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left|x-3\right|=x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x+1\\x-3=-x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-x=1+3\\x+x=-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=4\left(loại\right)\\2x=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)
Vậy ...
b/ \(\left|x-2\right|=2x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x+3\\x-2=-2x-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x-x=-2-3\\x+2x=-3+2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy ,..
a)TH1 x>=3 \(\left|x-3\right|\)=x-3
pttt: x-3-2x=1 suy ra x=-4 <3 -> loại
TH2 x=< 3 pttt 3-x-2x=1 suy ra x =2/3 thỏa mãn
b) VT=\(\dfrac{4^{x+2}+4^{x+1}+4^x}{21}=\dfrac{4^x\left(4^2+4+1\right)}{21}=4^x\)
VP= \(\dfrac{3^{2x}+3^{2x+1}+3^{2x+3}}{31}=\dfrac{9^x\left(1+3+27\right)}{31}=9^x\)
vậy pt đã cho tương đương với 4^x=9^x \(\Leftrightarrow\left(\dfrac{4}{9}\right)\)^x =1 suy ra x =0
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
a) | 2x - 1 | + 1/2 = 4/5
=> | 2x - 1 | = 4/5 - 1/2
=> | 2x - 1 | = 3/10
=> | 2x | = 3/10 - 1
=> | 2x | = -7/10 ( vô lý )
Vì 2x \(\ge\)0 ; -7/10 < 0
Nên không có giá trị nào của x thoản mãn
Bạn chỉ cần :
a) /2x-1/+1/2=4/5
b) /x^2+2/x-1/2//=x^2+2
c)/x^2/x+3/4//=x^2
d)//2x-1/-1/2/=4/5
Ta có:\(\left|\frac{1}{2}x\right|\ge0\Rightarrow3-2x\ge0\Rightarrow3\ge2x\Rightarrow x\le\frac{3}{2}\)
TH1:\(x< 0\),khi đó:
\(\left|\frac{1}{2}x\right|=3-2x\)
\(\Rightarrow\frac{-x}{2}=3-2x\)
\(\Rightarrow-x=6-4x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)(loại)
TH2:\(x\ge0\) thì khi đó:
\(\left|\frac{1}{2}x\right|=3-2x\)
\(\Rightarrow\frac{x}{2}=3-2x\)
\(\Rightarrow x=6-4x\)
\(\Rightarrow5x=6\)
\(\Rightarrow x=\frac{6}{5}\)(thỏa mãn)
Vậy \(x=\frac{6}{5}\)
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}