Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-x+2\right)\left(x-1\right)-x^2\left(x-1\right)^2+\left(2x+1\right)\left(x-1\right)^3\)
\(=\left(x-1\right)\left[x^2-x+2-x^2\left(x-1\right)+\left(2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-x+2-x^3+x^2+2x^3-4x^2+2x+x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x^3-x^2-x+3\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
1: \(x\left(x-1\right)+\left(1+x\right)^2\)
\(=x^2-x+x^2+2x+1\)
\(=2x^2+x+1\)
Đa thức này ko phân tích được nha bạn
2: \(\left(x+1\right)^2-3\left(x+1\right)\)
\(=\left(x+1\right)\cdot\left(x+1\right)-\left(x+1\right)\cdot3\)
\(=\left(x+1\right)\left(x+1-3\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
3: \(2x\cdot\left(x-2\right)-\left(x-2\right)^2\)
\(=2x\left(x-2\right)-\left(x-2\right)\cdot\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
4: \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^2\cdot\left(x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(4x-1\right)\)
5: \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\cdot3x-\left(x+2\right)\cdot\left(5x+10\right)\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(-2x-10\right)\left(x+2\right)\)
\(=-2\left(x+5\right)\left(x+2\right)\)
6: \(4x\left(x-y\right)+3\left(y-x\right)^2\)
\(=4x\left(x-y\right)+3\left(x-y\right)^2\)
\(=\left(x-y\right)\cdot4x+\left(x-y\right)\left(3x-3y\right)\)
\(=\left(x-y\right)\cdot\left(4x+3x-3y\right)\)
\(=\left(x-y\right)\left(7x-3y\right)\)
a) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
b) \(\left(x+1\right)^2-3\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)-3\right]\)
\(=\left(x+1\right)\left(x+1-3\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
c) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
1) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
2) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=\left(x-1\right)^2\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\left(4x-1\right)\)
4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(x+2\right)\left(-2x-10\right)\)
\(=-2\left(x+2\right)\left(x+5\right)\)
(x-1).(2x+1) + 3.(x-1).(x+2).(2x+1)
= (x-1).(2x+1).[1+3.(x+2)]
chúc bn học tốt
(x-1).(2x+1) + 3.(x-1).(x+2).(2x+1)
= (x-1).(2x+1).[1+3.(x+2)]
#
P(x) = (x^2 – 1) + (x + 1)(x – 2)
P(x) = (x – 1) (x+1) + (x + 1)(x – 2)
P(x) = (x + 1) (x – 1 + x – 2)
P(x) = (x +1) (2x – 3)
Ta có:
\(\dfrac{x^2-4}{x+1}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)}{x+1}\)
Và:
\(\dfrac{x+2}{2x}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)}{2x\left(x-2\right)}\)
Vậy ta đã biến đổi hai phân thức đó để chúng bằng phân thức cũ và có tủ bằng nhau
Ta có: