Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
13 giờ kém 15 ph \(=\dfrac{51}{4}h,12h30ph=\dfrac{25}{2}h\)
Thời gian lan đi tới trường là: \(\dfrac{51}{4}-\dfrac{25}{2}=\dfrac{1}{4}\left(h\right)\)
Vận tốc tối thiểu Lan phải đi là: \(v=\dfrac{S}{t}=4,5:\dfrac{1}{4}=18\left(\dfrac{km}{h}\right)\)
\(=>S1=v1.t=4,8.\dfrac{30}{60}=2,4km\)
\(=>S2=v2t=15.\dfrac{30}{60}=7,5km\)
\(=>S=S1+S2=2,4+7,5=9,9km\)
Vậy.....
Thời gian đi để bạn học sinh ấy kịp giờ:
\(t=6h45'-6h30'=15'=0,25\left(h\right)\)
Vận tốc bạn ấy phải di chuyển:
\(v=\dfrac{s}{t}=\dfrac{3}{0,25}=12\left(km/h\right)\)
Thời gian đi từ nhà đến trường là:
\(t=\dfrac{s}{v}=2:12,5=0,16giờ=9,6phút\)
Độ dài nữa quãng đường là:
2 : 2 = 1 (km)
Vận tốc sau khi thêm là:
\(12.5+1=13,5\left(\dfrac{km}{giờ}\right)\)
Thời gian đi từ nhà đến trường sau khi tăng vận tốc là:
\(t=\dfrac{s}{v}=1:13,5=\dfrac{2}{27}giờ\)
P/s: cái bài mik lm không chắc chắn lắm nha bạn, sai thì thôi
ta có:
thời gian đi trong mưa là:
\(t_1=\frac{S_1}{v_1}=\frac{S-2}{3}\)
thời đi lúc sau là:
\(t_2=\frac{S_2}{v_2}=\frac{2}{3.75}\)
vận tốc trung bình của em học sinh đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S-2}{3}+\frac{2}{3.75}}=\frac{S}{\frac{S-2+1.6}{3}}\)
\(\Leftrightarrow v_{tb}=\frac{3S}{s-0.4}\)
ta lại có:
do đoạn đường đi của học sinh dó là như nhau nên:
S1=S2
\(\Leftrightarrow tv=v_{tb}\left(t_1+t_2\right)\)
do học sinh đó đến lớp kịp lúc nên:
\(v\left(t_1+t_2\right)=v_{tb}\left(t_1+t_2\right)\)
\(\Leftrightarrow v=v_{tb}\left(1\right)\)
\(\Leftrightarrow3,5=\frac{3S}{S-0.4}\)
giải phương trình ta có:
S=2.8km
do vận tốc trung bình bằng với vận tốc lúc thường(1) nên vtb=3.5km/h
xin lỗi bạn!giải lại như sau:
gọi:
v là vận tốc hàng ngày của học sinh đó
t là thời gian đi hàng ngày của học sinh đó
ta có:
thời gian đi trước khi mưa là:
\(t_1=\frac{S_1}{v_1}=\frac{S_1}{3,5}\)
thời gian đi trong mưa là:
\(t_2=\frac{S_2}{v_2}=\frac{S_2}{3}\)
thời gian đi sau khi mưa là:
\(t_3=\frac{S_3}{v_3}=\frac{2}{3,75}=\frac{8}{15}\)
do học sinh này đến lớp kịp như bình thường nên:
t=t1+t2+t3
vận tốc trung bình của học sinh đó là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}\)
\(\Leftrightarrow v_{tb}=\frac{S}{t}\)
\(\Leftrightarrow v_{tb}=\frac{S}{\frac{S}{v}}\)
\(\Rightarrow v_{tb}=v\Rightarrow v_{tb}=3,5\)
như đã chứng minh ở trên,ta có:
t=t1+t2+t3
\(\Leftrightarrow\frac{S}{v}=\frac{S_1}{3,5}+\frac{S_2}{3}+\frac{8}{15}\)
\(\Leftrightarrow15S_1+17,5S_2+28=15S\)
\(\Leftrightarrow15S_1+17,5S_2+28=15\left(S_1+S_2+2\right)\)
\(\Leftrightarrow15S_1+17,5S_2+28=15S_1+15S_2+30\)
\(\Leftrightarrow2,5S_2=2\Rightarrow S_2=0,8km\)
từ đó ta suy ra:
t2=\(\frac{4}{15}h\) =16 phút
Thời gian Lan đi đến nhà Mai là :
\(t=\dfrac{S}{v}=\dfrac{7,2}{12}=0,6\left(h\right)=36'\)
Vậy Lan đến trường lúc :
\(8h+36'=8h36'\)
=> Chọn A
Câu tiếp theo hình như thiếu dữ kiện
\(5ph=\dfrac{1}{12}h\)
Thời gian Hoa dự định đi từ nhà đến trường là:
\(t_1=\dfrac{S}{v_1}=\dfrac{12}{15}=\dfrac{4}{5}\left(h\right)\)
Thời gian Hoa đi 3/4 quãng đường là:
\(t_2=\dfrac{S_2}{v_1}=\dfrac{\dfrac{3}{4}.12}{15}=\dfrac{3}{5}\left(h\right)\)
Vận tốc Hoa phải đi là:
\(v_3=\dfrac{S_3}{t_3}=\dfrac{\dfrac{1}{4}.12}{\dfrac{4}{5}-\dfrac{3}{5}-\dfrac{1}{12}}=\dfrac{180}{7}\left(\dfrac{km}{h}\right)\approx25,7\left(\dfrac{km}{h}\right)\Rightarrow C\)
Tóm tắt:
\(s=3km\\ t_0=6h30'=6,5h\\ t'=6h45'=6,75h\\ \overline{a)v=?}\\ b)v_1=10km/h\\ s_1=s_2=\dfrac{s}{2}=\dfrac{3}{2}=1,5km\\ v_2=?\)
Giải:
a) Thời gian đi đến trường của Lan là:
\(t=t'-t_0=6,75-6,5=0,25\left(h\right)\)
Vận tốc của Lan là:
\(v=\dfrac{s}{t}=\dfrac{3}{0,25}=12\left(km/h\right)\)
b) Thời gian đi hết nửa quãng đường đầu là:
\(t_1=\dfrac{s_1}{v_1}=\dfrac{1,5}{10}=0,15\left(h\right)\)
Thời gian còn lại để đi hết quãng đường còn lại là:
\(t_2=t-t_1=0,25-0,15=0,1\left(h\right)\)
Vận tốc mà Lan phải đi ở quãng đường còn lại là:
\(v_2=\dfrac{s_2}{t_2}=\dfrac{1,5}{0,1}=15\left(km/h\right)\)
Vậy:....
Tóm tắt :
\(s=3km\)
\(t_đ=6h30p=6,5h\)
\(t_k=6h45p=6,75h\)
a) \(v=?\)
b) \(v_2=?\)
GIẢI :
a) Thời gian Lan đi từ nhà đến trường hết :
\(t=t_k-t_đ=6,75-6,5=0,25\left(h\right)\)
Vận tốc của Lan là :
\(v=\dfrac{s}{t}=\dfrac{3}{0,25}=12\) (km/h)
b) Hai đoạn đường dài :
\(s_1=s_2=\dfrac{s}{2}=\dfrac{3}{2}=1,5\left(km\right)\)
Thời gian Lan đi đoạn đường đầu hết :
\(t_1=\dfrac{s_1}{v_1}=\dfrac{1,5}{10}=0,15\left(h\right)\)
Thời gian còn lại Lan cần đi để đến trường :
\(t_2=t-t_1=0,25-0,15=0,1\left(h\right)\)
Nửa quãng đường còn lại Lan cần đi với vận tốc :
\(v_2=\dfrac{s_2}{t_2}=\dfrac{1,5}{0,1}=15\)(km/h)