Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được tương tự câu 1a,
=> O ' M O ^ = 90 0
Áp dụng hệ thức lượng trong tam giác vuông tính được MA = R r
b, Chứng minh
S
B
C
O
O
'
=
R
+
r
R
r
c, Chứng minh được: ∆BAC:∆OMO’ => S B A C S O M O ' = B C O O ' 2
=> S B A C = S O M O ' . B C 2 O O ' 2 = 4 R r R r R + r
d, Tứ giác OBCO’ là hình thang vuông tại B và C có IM là đường trung bình => IM ⊥ BC = {M}
Lời giải:
1. Vì $MA, MB$ là tiếp tuyến của $(O)$ nên $MA\perp OA, MB\perp OB$.
Khi đó $\widehat{MAO}=\widehat{MBO}=90^0$
Tứ giác $MAOB$ có tổng 2 góc đối nhau $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$
$\Rightarrow MAOB$ là tứ giác nội tiếp.
$\Rightarrow M,A,O,B$ cùng thuộc 1 đường tròn.
2.
Có: $MA=MB, OA=OB$ nên $MO$ là trung trực của $AB$
$\Rightarrow MO\perp AB$ tại $C$.
Xét tam giác $MOB$ vuông tại $B$ có đường cao $BC$. Áp dụng hệ thức lượng trong tam giác vuông thì:
$MC.MO=MB^2(1)$
Xét tam giác $MQB$ và $MBD$ có:
$\widehat{M}$ chung
$\widehat{MBQ}=\widehat{MDB}$ (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)
$\Rightarrow \triangle MQB\sim \triangle MBD$ (g.g)
$\Rightarrow \frac{MQ}{MB}=\frac{MB}{MD}$
$\Rightarrow MQ.MD=MB^2(2)$
Từ $(1); (2)\Rightarrow MQ.MD=MC.MO$
a: Ta có: ΔODE cân tại O
mà OK là đường cao
nên K là trung điểm của DE
Xét tứ giác CDBE có
K là trung điểm chung của CB và DE
=>CDBE là hình bình hành
Hình bình hành CDBE có CB\(\perp\)DE
nên CDBE là hình thoi
b: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó;ΔADB vuông tại D
=>AD\(\perp\)DB
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)EB
Xét (I) có
ΔCMA nội tiếp
CA là đường kính
Do đó: ΔCMA vuông tại M
Xét (I) có
ΔCNA nội tiếp
AC là đường kính
Do đó: ΔCNA vuông tại N
Ta có: AM\(\perp\)DC
DC//EB
Do đó: AM\(\perp\)EB
Ta có: AM\(\perp\)EB
AE\(\perp\)EB
AM,AE có điểm chung là A
Do đó: M,A,E thẳng hàng
Ta có: AD\(\perp\)DB
AN\(\perp\)CE
DB//CE
AD,AN có điểm chung là A
Do đó: D,A,N thẳng hàng
Xét ΔCME vuông tại M và ΔCND vuông tại N có
\(\widehat{MCE}\) chung
Do đó: ΔCME đồng dạng với ΔCND
=>\(\dfrac{CM}{CN}=\dfrac{CE}{CD}\)
=>\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
Xét ΔCMN và ΔCED có
\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
\(\widehat{MCN}\) chung
Do đó: ΔCMN đồng dạng với ΔCED
=>\(\widehat{CMN}=\widehat{CED}\)
mà \(\widehat{CMN}+\widehat{DMN}=180^0\)(hai góc kề bù)
nên \(\widehat{DMN}+\widehat{CED}=180^0\)
=>DMNE là tứ giác nội tiếp
=>D,M,N,E cùng thuộc một đường tròn
Hóa học đấy ông nội ơi !