Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi 20 phút = $\frac{1}{3}$ giờ; 30 phút = $\frac{1}{2}$ giờ
Giả sử vòi 1 và vòi 2 chảy 1 mình thì sau tương ứng $a,b$ giờ thì đầy bể
Khi đó, trong 1 giờ thì:
Vòi 1 chảy $\frac{1}{a}$ bể; vòi 2 chảy $\frac{1}{b}$ bể
Theo bài ra ta có: \(\left\{\begin{matrix} \frac{3}{a}+\frac{3}{b}=1\\ \frac{1}{3a}+\frac{1}{2b}=\frac{1}{8}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{4}\\ \frac{1}{b}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=12\end{matrix}\right.\)
Vậy......
Gọi thời gian vòi 1 chảy một mình đầy bể là x (h)
thời gian vòi 2 chảy một mình đầy bể là y(h)
ĐK : x > 6 ; y > 6
Ta có 1 giờ vòi 1 chảy được \(\dfrac{1}{x}\) (bể)
1 giờ vòi 2 chảy được \(\dfrac{1}{y}\)(bể)
1 giờ 2 vòi chảy được \(\dfrac{1}{6}\left(bể\right)\)
=> PT : \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
mà vòi 1 chảy trong 2 giờ rồi khóa ; vòi 2 chảy tiếp 3 giờ được 40% bể
=> PT \(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\)(2)
Từ (1) (2) => HPT : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{3}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)(tm)
Vậy...
Gọi thời gian vòi 1 chảy một mình đẩy bể là x ( x<4)
Gọi thời gian vòi 2 chảy một mình đầy bể là y (y<4)
Trong một giờ:
-Vòi 1 chảy một mình được \(\dfrac{1}{x}\)(bể)
-Vòi 2 chảy được \(\dfrac{1}{y}\)(bể)
-Cả hai vòi chảy được \(\dfrac{1}{4}\)(bể)
+Ta có PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{9}\) (1)
Vì nếu để vòi 1 chảy một mình trong 30 phút rồi khóa lại và mở vòi hai trong 20 phút thì cả hai vòi chảy được 1/9 bể nên có PT:
\(\dfrac{1}{2}x+\dfrac{1}{3}y=\dfrac{1}{9}\)
⇔\(\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\) (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{x}{1}+\dfrac{y}{1}=\dfrac{1}{4}\\\dfrac{x}{2}+\dfrac{y}{3}=\dfrac{1}{9}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)(TM)
Vậy vòi 1 chảy một mình trong 6 giờ thì đẩy bể
Vậy vòi 2 chảy một mình trong 12 giờ thì đẩy bể
Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)
\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ
Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ
\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)
Ta có phương trình :
\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)
\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)
\(\Leftrightarrow12a+24+12a=5a^2+10a\)
\(\Leftrightarrow-5a^2+14a+24=0\)
\(\Leftrightarrow-5a^2-6a+20a+24=0\)
\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)
\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ
thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.
gọi 1/x là số nước chảy vào trong 1 h của vòi một
=> ... vòi hai là 1/X+6
ta có:
1/x+1/x+6 = 1/4
=> x bằng 6
. vậy nếu mở riêng từng vòi thì vòi 1 có thời gian là 6h
vòi hai là 10h
Gọi thời gian để vòi thứ nhất và vòi thứ hai chảy đầy bể khi chảy một mình lần lượt là \(a,b\left(a,b>0\right)\)
Vòi thứ nhất chảy trong 1h được \(\frac{1}{a}\) (bể)
Vòi thứ hai chảy trong 4 giờ được \(\frac{4}{b}\) ( bể)
Từ giả thiết suy ra \(\frac{1}{a}+\frac{4}{b}=\frac{7}{12}\)
Mặt khác nếu chảy một mình thì thời gian vòi thứ 2 chảy đầy bể nhanh hơn voi thứ nhất chảy đầy bể là 8 giờ nên \(a-b=8\)
Suy ra ta có hệ pt:
\(\left\{{}\begin{matrix}a-b=8\\\frac{1}{a}+\frac{4}{b}=\frac{7}{12}\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}a=b+8\\\frac{1}{a}+\frac{4}{b}=\frac{7}{12}\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}a=b+8\\\frac{1}{b+8}+\frac{4}{b}=\frac{7}{12}\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}a=b+8\\\left[{}\begin{matrix}b=\frac{48}{7}\\b=-8\end{matrix}\right.\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=\frac{104}{7}\\b=\frac{48}{7}\end{matrix}\right.\)