K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

21 tháng 9 2020

b) Ta có: 

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)

Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)

\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)

\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)

\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)

Vậy Min(P) = 0 khi x = 0

20 tháng 9 2019

a.\(DK:x\ge0\)

\(A=\frac{x-2\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}+1\right)}{x-2\sqrt{x}+1}=\sqrt{x}+1\)

b.Dat \(P=\frac{1}{A}\left(x+3\right)=\frac{x+3}{\sqrt{x}+1}\left(P>0\right)\)

\(\Rightarrow P\sqrt{x}+P=x+3\)

\(\Leftrightarrow x-P\sqrt{x}+3-P=0\)

Dat \(t=\sqrt{x}\left(t\ge0\right)\)

Ta co:

\(\Delta\ge0\)

\(\Leftrightarrow P^2-4\left(3-P\right)\ge0\)

\(\Leftrightarrow P^2+4P-12\ge0\)

\(\Leftrightarrow\left(P-2\right)\left(P+6\right)\ge0\)

TH1:

\(\hept{\begin{cases}P-2\ge0\\P+6\ge0\end{cases}\Leftrightarrow P\ge2}\)

TH2:

\(\hept{\begin{cases}P-2\le0\\P+6\le0\end{cases}\Leftrightarrow P\le2\left(P>0\right)}\)

Vi la de bai tim min nen lay TH1 thoi 

Dau '=' xay ra khi \(x=\frac{P}{2}=1\)

Vay \(P_{min}=2\)khi \(x=1\)

20 tháng 9 2019

b. Cach 2:

\(P=\frac{x+3}{\sqrt{x}+1}=2+\frac{x-2\sqrt{x}+1}{\sqrt{x}+1}=2+\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\ge2\)

Dau '=' xay ra khi \(x=1\)

Vay \(P_{min}=2\)khi \(x=1\)