Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x là căn bậc hai số học của số a không âm là x ≥ a và x2 = a.
Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 22 = 4.
Để x là căn bậc hai số học của số a không âm là x ≥ a và x 2 = a .
Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 2 2 = 4 .
Phân tích rõ một chút nhé :
- Căn bậc 2 của số x (bắt buộc là số x phải >=0 ) là \(\sqrt{x},-\sqrt{x}\)
Thì căn bậc 2 số học của x là \(\sqrt{x}\)(do\(\sqrt{x}\ge0\))
- Đối với trường hợp căn bậc 2 số học của x2 thì là |x|
Căn bậc hai số học của một số nguyên dương x là a sao cho
\(\left\{{}\begin{matrix}a>0\\a^2=x\end{matrix}\right.\)
Hằng đẳng thức về căn thức là:
\(\sqrt{A^2}=\left|A\right|\)
Quy tắc:
\(\sqrt{A^2\cdot B}=\sqrt{B}\cdot\left|A\right|\)
\(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt{A}}{\sqrt{B}}\)
\(\sqrt{A\cdot B}=\sqrt{A}\cdot\sqrt{B}\)
Hàm số đồng biến: y=x+10
Hàm số nghịch biến: y=-x+6
Nêu các bước vẽ đồ thị hàm số y = ax (a khác 0) (đã học ở lớp 7)
\(\sqrt[3]{8}=2\)
\(\sqrt[3]{97336}=46\)