Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất DTSBN :
\(\dfrac{x}{5}=\dfrac{y}{8}=\dfrac{2y}{16}=\dfrac{x-2y}{5-16}=\dfrac{33}{-11}=-3\)
\(\Rightarrow y=-3.8=-24\)
=> Chọn đáp án : D
bạn cho nhìu ứa nên mik trả lời vài câu nha:
1.
A. Vì |x- 1/2| >=0 => Amin =0
B.Vì |x + 3/4| >=0 => B >= 2 (cộng 2 mà) => Bmin =2 khi x+ 3/4 =0 ....
các câu còn lại làm tương tự nhé
Bài : 5
a) Ta có : A = 3 + |4 - x|
Vì : \(\left|4-x\right|\ge0\forall x\)
Nên : A = 3 + |4 - x| \(\ge3\forall x\)
Vậy Amin = 3 khi x = 4
b) Ta có : B = 5|1 - 4x| - 1
Vì \(\text{5|1 - 4x|}\ge0\forall x\)
Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)
Vậy Bmin = -1 khi x = 1/4
a)\(\left|2x-3\right|=6\)
\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
b)\(2.\left|3x+1\right|=5\)
\(\left|3x+1\right|=2,5\)
\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
c)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(...\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
a) A = \(9\frac{3}{8}-\left(2\frac{3}{5}+2\frac{3}{8}\right)=9\frac{3}{8}-2\frac{3}{5}-2\frac{3}{8}=\left(9\frac{3}{8}-2\frac{3}{8}\right)-2\frac{3}{5}=7-\frac{13}{5}=\frac{22}{5}\)
b) B = \(\left(15\frac{3}{5}+5\frac{3}{4}\right)-8\frac{3}{5}=15\frac{3}{5}+5\frac{3}{4}-8\frac{3}{5}=\left(15\frac{3}{5}-8\frac{3}{5}\right)+5\frac{3}{4}=7+\frac{23}{4}=\frac{51}{4}\)
c) C = \(17\frac{1}{4}-\left(2\frac{3}{7}+7\frac{1}{4}\right)=17\frac{1}{4}-2\frac{3}{7}-7\frac{1}{4}=\left(17\frac{1}{4}-7\frac{1}{4}\right)-2\frac{3}{7}=10-\frac{17}{7}=\frac{53}{7}\)
d) D = \(\left(11\frac{5}{17}+3\frac{5}{7}\right)-4\frac{5}{17}=11\frac{5}{17}+3\frac{5}{7}-4\frac{5}{17}=\left(11\frac{5}{17}-4\frac{5}{17}\right)+3\frac{5}{7}=7+\frac{26}{7}=\frac{75}{7}\)
A