Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Tìm tập xác định của hàm số
Bước 2: Xét sự biến thiên
- Xét chiều biến thiên:
+ Tìm đạo hàm f’(x)
+ Tìm các điểm mà tại đó f’(x) bằng không hoặc không xác định
+ Xét dấu của đạo hàm f’(x) và suy ra chiều biến thiên của hàm số.
- Tìm cực trị
- Tìm giới hạn vô cực và tiệm cận ( nếu có)
- Lập bảng biến thiên.
Bước 3: Vẽ đồ thị hàm số.
Hàm số y = f(x)
Các bước khảo sát hàm số:
1. Tìm tập xác định của hàm số
2. Sự biến thiên
- Xét chiều biến thiên:
+ Tính đạo hàm y'
+ Tìm các điểm tại đó y' bằng 0 hoặc không xác định
+ Xét dấu của đạo hàm y' và suy ra chiều biến thiên của hàm số.
- Tìm cực trị
- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có)
- Lập bảng biến thiên.
3. Vẽ đồ thị của hàm số
Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị.
* Hàm số y = ax + b
Trường hợp a > 0
1. TXĐ: D = R.
2. Sự biến thiên.
y’ = a > 0. Vậy hàm số đồng biến trên toàn bộ R.
Trường hợp a < 0
1. TXĐ: D = R.
2. Sự biến thiên.
y’ = a < 0. Vậy hàm số đồng biến trên toàn bộ R.
* Hàm số y = ax2 + bx + c
Trường hợp a > 0
1. TXĐ: D = R.
2. Sự biến thiên.
y’ = 2ax + b. Cho y’ = 0 thì x = - b/2a.
Hàm số nghịch biến trên khoảng (-∞,- b/2a).
Hàm số đồng biến trên khoảng [- b/2a, +∞].
Hàm số đạt cực tiểu bằng - Δ/4a tại x = - b/2a .
3. Vẽ đồ thị:
Trường hợp a < 0
1. TXĐ: D = R.
2. Sự biến thiên.
y’ = 2ax + b. Cho y’ = 0 thì x = - b/2a.
Hàm số đồng biến trên khoảng (-∞,- b/2a).
Hàm số nghịch biến trên khoảng [- b/2a, +∞].
Hàm số đạt cực đại bằng - Δ/4a tại x = - b/2a .
3. Vẽ đồ thị:
a) Tập xác định: R\{0}
Hàm số đã cho là hàm số lẻ.
Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
b) Tập xác định: D = (0; +∞)
Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.
Bảng biến thiên:
c) Tập xác định: D = (0; + ∞ )
y′ > 0, ∀ x ∈ D
Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị không có tiệm cận.
Bảng biến thiên
Đồ thị
Xét hàm số ta có:
- Tập khảo sát : (0 ; +∞).
- Sự biến thiên:
+ với ∀ x > 0.
Do đó, hàm số đã cho đồng biến trên tập xác định.
+ Giới hạn:
+ Tiệm cận : Đồ thị hàm số không có tiệm cận.
+ Bảng biến thiên:
- Đồ thị hàm số:
Với a = 0 ta có hàm số
- Tập xác định : D = R.
- Sự biến thiên :
y’ = -x2 – 2x + 3 ;
y’ = 0 ⇔ x = -3 hoặc x = 1.
Bảng biến thiên :
Kết luận :
Hàm số đồng biến trên (-3 ; 1)
Hàm số nghịch biến trên (-∞; -3) và (1; +∞).
Hàm số đạt cực đại tại x = 1 ;
Hàm số đạt cực tiểu tại x = -3 ; yCT = -13.
- Đồ thị hàm số :
Tập xác định: D = (0; + ∞ )
y′ > 0, ∀ x ∈ D
Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị không có tiệm cận.
Bảng biến thiên
Đồ thị
Do đó, hàm số đã cho nghịch biến trên tập xác định.
+ Giới hạn:
⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số
y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
y = 4 x + 4 2 x + 1
Tập xác định: D = R \ {−1/2}
Ta có
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng (− ∞ ; −1/2) và (−1/2; + ∞ )
Tiệm cận đứng: x = −1/2;
Tiệm cận ngang: y = 2.
Giao với các trục tọa độ: (0; 4) và (-1; 0)
Đồ thị:
a) Tìm tập xác định của hàm số. Xét tính chẵn, lẻ, tuần hoàn của hàm số để thu hẹp phạm vi khảo sát.
b) Sự biến thiên :
+ Xét sự biến thiên của hàm số :
- Tìm đạo hàm bậc nhất y' ;
- Tìm các điểm tại đó y' bằng 0 hoặc không xác định ;
- Xét dấu y' và suy ra chiều biến thiên của hàm số .
+ Tìm cực trị .
+ Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm các tiệm cận (nếu có).
+ Lập bảng biến thiên tổng kết các bước trên để hình dung ra dáng điệu của đồ thị .
c) vẽ đồ thị (thể hiện các cực trị, tiệm cận, giao của đồ thị với các trục, . . .).