Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu P là số nguyên tố lớn hơn 3 và 2P+1 cũng là số nguyên tố thì 4P+1 là số nguyên tố hay là hợp số?
P là số nguyên tố lớn hơn 5 và 2p+1 cũg là số nguyen tố thì có dạg 3k +1 và 3k+2
Nếu p=3k+1thif chia het cho 3 => 3k+1k phải là số nguyen tố => loại
=> p =3k+2 . Khi đó chia het cho 3
=> 4k+1 là hop so
TICH NHA CHI IU
A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
B , nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI
nếu p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này
vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số
chứng tỏ 4p+1 là hợp số (đpcm)
Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1
Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số (LOẠI)
VẬY ......................
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3
P là số nguyên tố lớn hơn 3 => P=3k+1 hoặc P=3k+2
=> 4P+1=12k+2 hoặc =12k+3
vậy là hợp số
P là số nguyên tố lớn hơn 3 nên P có 2 trường hợp \(\hept{\begin{cases}3k+1\\3k+2\end{cases}}\)
Xét trường hợp 1) \(P=3k+1\)
Ta có \(2P+1=2\left(3k+1\right)+1=6k+2+1=6k+2+1=6k+3\left(⋮3\right)\)nên là hợp số (loại)
Xét trường hợp 2) \(P=3k+2\)
Ta có \(2P+1=2\left(3k+2\right)+1=6k+4+1=6k+5\) là số nguyên tố theo đề bài nên ta chọn
Vậy \(4P+1=4\left(3k+2\right)+1=12k+8+1=12k+8+1=12k+9\) thấy \(12k\) và \(9\)đều \(⋮3\) nên \(12k+9\) là hợp số
Từ đó,suy ra \(4P+1\) là hợp số
\(\Rightarrowđpcm\)