Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b\ne0,a\ne b\)
\(\frac{a}{b-a}=\frac{10a}{b}\) \(\Leftrightarrow\) \(10a\left(b-a\right)=ab\) \(\Leftrightarrow\) \(10ab-10a^2=ab\) \(\Leftrightarrow\) \(9ab-10a^2=0\Leftrightarrow a\left(9b-10a\right)=0\) \(\Rightarrow9b-10a=0\) \(\Leftrightarrow9b=10a\Leftrightarrow\frac{10a}{b}=9\Leftrightarrow\frac{a}{b}=\frac{9}{10}\)
Vậy, \(\frac{9}{10}\) là phân số cần tìm.
Ta có:
\(\frac{a}{b}=\frac{a+4}{b+10}\)
Nhân tích chéo thì ta có:
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Rightarrow ab+10a=ab+4b\)
\(\Rightarrow10a=4b\)
\(\Rightarrow\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
Vậy \(\frac{a}{b}=\frac{2}{5}\)
1) Trướt hết mình xin ký hiệu lại:
a/b tối giản <=> (a;b)=1 tức là ước chung lớn nhất của a, b là 1
2) Ta sẽ chứng minh:
Nếu (a;b)=1 thì (b;a-b)=1 (*)
Bằng phản chứng: giả sử rằng (b;a-b)=k (k>1) khi đó ta có thể viết
b = k.u (u nguyên) (**)
a-b = k.v (v nguyên) (***)
Từ (**)(***) suy ra a = k(u+v) và do đó (a;b) = (k(u+v); ku) = k >1 là trái giả thiết.
Vậy (*) đã được chứng minh.
3) a/b tối giản => a/b -1 = (a-b)/b tối giản (theo (*))
bằng quy nạp sẽ chứng minh được a/b - n tối giản. (đpcm)
Đáp án B
Đặt t = 3 x > 0 , khi đó 9 x − 3 m .3 x + 3 m = 0 ⇔ 2 − 3 m . t + 3 m = 0 *
Để phương trình có 2 nghiệm phân biệt ⇔ * có 2 nghiệm phân biệt
⇔ Δ = 9 m 2 − 12 m > 0 t 1 + t 2 > 0 ; t 1 t 2 > 0 ⇔ 9 m 2 − 12 m > 0 3 m > 0 ⇔ m > 4 3 ⇔ m > a b → a = 4 b = 3 ⇒ b − a = − 1
chtt