Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a + 4 c > b + 4c nên : a + 4c + (- 4c) > b + 4c + (-4c) hay a> b.
Nhân cả 2 vế với 6> 0 ta được: 6a > 6b.
Chọn C.
* Từ a- b > a suy ra: a – b + ( -a) > a + (-a) hay – b >0
⇔ b < 0 ( nhân cả 2 vế với -1).
* Từ a + b < b suy ra: a + b + (- b) < b + (-b)
Hay a < 0
Vậy a < 0 và b < 0 .
Chắc đề đúng là \(\left(m-1\right)x^2+2\left(m-1\right)x-m\le0\)
Để BPT đã cho có tập nghiệm \(S=\left[a;b\right]\) hữu hạn thì:
\(\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m-1\right)^2+4m\left(m-1\right)>0\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó a; b sẽ là nghiệm của pt bậc 2
\(\Rightarrow\left\{{}\begin{matrix}a+b=-2\\ab=\frac{m}{1-m}\end{matrix}\right.\)
\(a^2+b^2+ab=6\)
\(\Leftrightarrow\left(a+b\right)^2-ab-6=0\)
\(\Leftrightarrow\frac{m}{m-1}-2=0\Rightarrow m=2\)
Nếu a> b >0 và c> d > 0 thì
* a+ c > b + d
* Từ a > b > 0 và c > 0 nên ac > bc (1)
Lại có c > d và b > 0 nên bc > bd (2)
Từ(1) và (2) suy ra: ac > bd.
* Ta có:
a b > b b = 1 ; d c < c c = 1 ⇒ a b > 1 > d c
Vậy khẳng định C sai.
Áp dụng tính chất:
+ Nếu a > b và c là số dương thì ac > bc.
+ Nếu a > b > 0 thì a 2 > b 2 .
+ Nếu a > b > 0 , c > d > 0 thì ac > bd.
Do đó ba bất đẳng thức ở các phương án A, C, D đều đúng.
Bất đẳng thức ở phương án B không đúng, chẳng hạn 5>3,4>1 mà 5-4<3-1. Vậy đáp án là B.
a) \(\left(n+1\right)\left(n+3\right)=0\)
\(\Rightarrow n+1=0\) hoặc \(n+3=0\)
+) \(n+1=0\Rightarrow n=-1\)
+) \(n+3=0\Rightarrow n=-3\)
Vậy \(n\in\left\{-1;-3\right\}\)
b) \(\left(\left|n\right|+2\right)\left(n^2-1\right)=0\)
\(\Rightarrow\left|n\right|+2=0\) hoặc \(n^2-1=0\)
+) \(\left|n\right|+2=0\Rightarrow\left|n\right|=-2\) ( loại )
+) \(n^2-1=0\Rightarrow n^2=1\Rightarrow n=1\) hoặc \(n=-1\)
Vậy \(n\in\left\{1;-1\right\}\)
Nếu m >0 thì – m <0
Ta có: n <0 và – m <0 nên n + (-m) < 0 hay n – m < 0
Chọn B.