Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dạng chuẩn của số π với 10 chữ số chắc là 3,141592654 với sai số tuyệt đối ∆π≤ 10-9.
b) Viết π ≈ 3,14 ta mắc phải sai số tuyệt đối không quá 0,002. Trong cách viết này có 3 chữ số đáng tin.
Viết π ≈ 3,1416 ta mắc phải sai số tuyệt đối không quá 10-4. Viết như vậy thì số π này có 5 chữ số đáng tin.
\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)
\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)
\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)
Bạn ghi ko đúng đề
a) (-12; 3] ∩ [-1; 4] = [-1; 3]
b) (4, 7) ∩ (-7; -4) = Ø
c) (2; 3) ∩ [3; 5) = Ø
d) (-∞; 2] ∩ [-2; +∞)= [-2; 2].
a) (-12; 3] ∩ [-1; 4] = [-1; 3]
b) (4, 7) ∩ (-7; -4) = Ø
c) (2; 3) ∩ [3; 5) = Ø
d) (-∞; 2] ∩ [-2; +∞)= [-2; 2].
a) -1 ≤ -0,7 ≤ 1. Có cung α mà sin α = -0,7
b) > 1. Không có cung α có sin nhận giá trị
c) Không. Vì -√2 < -1
d) Không. Vì > 1
Đáp án: B
π ≈ 3,141592659…. Giá trị gần đúng là 3,1416 có 6 là số được quy tròn từ 5 nên 6 không là chữ số chắc. Do đó các chữ số chắc là: 3, 1, 4, 1.