K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút. Điều kiện x > 0, y > 0.

Ta có 1 giờ 20 phút = 80 phút.

Trong 1 phút vòi thứ nhất chảy được bể, vòi thứ hai chảy được bể, cả hai vòi cùng chảy được bể nên ta được + = .

Trong 10 phút vòi thứ nhất chảy được bể, trong 12 phút vòi thứ hai chảy được bể. Vì cả hai vòi cùng chảy được bể. Ta được:

+ =

Ta có hệ phương trình:

Giải ra ta được x = 120, y = 240.

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).



Xem thêm tại: http://loigiaihay.com/bai-38-trang-24-sgk-toan-9-tap-2-c44a5643.html#ixzz4diNZufQg

14 tháng 12 2021

Bạn ơi bạn giảng lại cho mình chỗ 1/x,1/y đc ko ạ.mình chưa hiểu lắm

20 tháng 9 2018

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 bể; vòi thứ hai chảy được Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 . Khi đó hệ phương trình trở thành :

QUẢNG CÁO

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

13 tháng 9 2018

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được 1/x bể; vòi thứ hai chảy được 1/y bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 . Khi đó hệ phương trình trở thành :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình :

Bước 1 : Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.

25 tháng 8 2016

Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút. Điều kiện x > 0, y > 0.

Ta có 1 giờ 20 phút = 80 phút.

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai chảy được \(\frac{1}{y}\) bể, cả hai vòi cùng chảy được \(\frac{1}{80}\) bể nên ta được  \(\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\).

Trong 10 phút vòi thứ nhất chảy được \(\frac{10}{x}\) bể, trong 12 phút vòi thứ hai chảy được \(\frac{12}{x}\) bể. Vì cả hai vòi cùng chảy được \(\frac{2}{15}\) bể. Ta được:

\(\frac{10}{x}+\frac{12}{x}=\frac{2}{15}\)

Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\\\frac{10}{x}+\frac{12}{y}=\frac{2}{15}\end{cases}\)

Giải ra ta được x = 120, y = 240.

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).

 

28 tháng 2 2018
https://i.imgur.com/TXtKABB.png
21 tháng 5 2019

Đổi 1h30' = 3/2 h , 20' = 1/3 h và 15' = 1/4h

Gọi lượng nc vòi 1 và 2 chảy vào bể trong 1h là x và y (x,y >0)

 mà 2 vòi cùng chảy vào bể cạn trong 1h30' thì đầy .

=> 3/2x + 3/2y =1 ( 1 ở đây có nghĩa là đầy hay là 100% ý mà)    (1)

và 20 phút của vòi 1 cộng với 15 phút vòi 2 thì dc 1/5 bể 

=> 1/3x + 1/4y = 1/5 ( 20% đó ) (2)

từ (1) và (2) ta có hệ :

\(\hept{\begin{cases}\frac{3}{2}x+\frac{3}{2}y=1\\\frac{1}{3}x+\frac{1}{4}y=\frac{1}{5}\end{cases}}\)

 áp dụng định lý INEQ trong máy tính fx 500 hoặc 570 là giải đc hệ nhanh thôi !!!!

ra đc mỗi giờ thì nghịch đảo kết quả là ra đầy bể trong bao lâu thôi !!!!

30 tháng 9 2020

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất , vòi thứ hai chảy một mình để đầy bể.

( Điều kiện: x, y > 80 )

Trong 1' vòi thứ nhất chảy được \(\frac{1}{x}\)bể , vòi thứ 2 chảy được \(\frac{1}{y}\)bể

Đổi 1h20' = 80'

Sau 80' , cả 2 vòi cùng chảy đầy bể nên ta có p/trình :

\(80.\frac{1}{x}+80.\frac{1}{y}=1\)

Mở vòi thứ nhất chảy trong 10' và vòi thứ 2 chảy trong 12' thì chỉ được \(\frac{2}{15}\)bể nước nên ta có p/trình :

\(10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\)

Ta có HPT :

\(\hept{\begin{cases}80.\frac{1}{x}+80.\frac{1}{y}=1\\10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\end{cases}}\)

Đặt \(\frac{1}{x}=u\)\(\frac{1}{y}=v\). Khi đó HPT trở thành :

\(\hept{\begin{cases}80u+80v=1\\10u+12v=\frac{2}{15}\end{cases}\Leftrightarrow\hept{\begin{cases}u+v=\frac{1}{80}\\5u+6v=\frac{1}{15}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5u+5v=\frac{1}{16}\\6u+6v=\frac{1}{15}\end{cases}\Leftrightarrow\hept{\begin{cases}v=\frac{240}{v}\\u=\frac{1}{120}\end{cases}}}\)

\(+u=\frac{1}{120}\Rightarrow\frac{1}{x}=\frac{1}{120}\Rightarrow x=120\left(tmđk\right)\)

\(+v=\frac{1}{240}\Rightarrow\frac{1}{y}=\frac{1}{240}\Rightarrow y=240\left(tmđk\right)\)

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút ( = 2 giờ ) , vòi thứ hai 240 phút ( = 4 giờ )

30 tháng 9 2020

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể (Đk: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\)bể;vòi thứ hai chảy được \(\frac{1}{y}\)bể

Sau 1h20'= 80', cả hai vòi cùng chảy thì đầy bể nên ta có pt:\(80.\frac{1}{x}+80.\frac{1}{y}=1\)

Mở vòi thứ nhất trong 10' và vòi thứ 2 trong 12' thì chỉ được \(\frac{2}{15}\) bể nước nên ta có pt :\(10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\)

Ta có hệ pt:\(\hept{\begin{cases}80.\frac{1}{x}+80.\frac{1}{y}=1\\10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\end{cases}}\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\).Khi đó hpt là:\(\hept{\begin{cases}80.a+80.b=1\\10.a+12.b=\frac{2}{15}\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{1}{80}\\5a+6b=\frac{1}{15}\end{cases}\Rightarrow}\hept{\begin{cases}5a+5b=\frac{1}{16}\\5a+6b=\frac{1}{15}\end{cases}\Rightarrow}\hept{\begin{cases}b=\frac{1}{240}\\a=\frac{1}{120}\end{cases}}}\)

Vì \(a=\frac{1}{120}\Rightarrow\frac{1}{x}=\frac{1}{120}\Rightarrow x=120\left(tm\right)\)

\(b=\frac{1}{240}\Rightarrow\frac{1}{y}=\frac{1}{240}\Rightarrow y=240\left(tm\right)\)

Vậy ....

15 tháng 4 2021

gọi 1/x là số nước chảy vào trong 1 h của vòi một

=> ... vòi hai là 1/X+6

ta có:

1/x+1/x+6 = 1/4

=> x bằng 6

. vậy nếu mở riêng từng vòi thì vòi 1 có thời gian là 6h

vòi hai là 10h

17 tháng 12 2022

- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)

Đổi 1h30p=90p

- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:

\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)

- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:

\(15x+20y=\dfrac{1}{5}\left(2\right)\)

(1), (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)

Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.

Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.

6 tháng 11 2023

Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.

Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).

Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:

6 * 2x = 1 (bể đầy)

Từ đó, ta có:

12x = 1

x = 1/12

Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.

Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.

Gọi thời gian chảy một mình đầy bể của vòi 1 và vòi 2 lần lượt là a,b

Theo đề, ta có hệ:

1/a+1/b=1/1,5 và 1/4*1/a+1/3*1/b=1/5

=>a=15/4 và b=5/2