Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: RS/PQ = RK/PM = SK/QM ⇒ Δ RSK đồng dạng Δ PQM
Chọn đáp án A.
Xuất phát từ điều cần chứng minh Û P(S + R) = R(Q + P)
Rút gọn còn PS = RQ hay P Q = R S (đúng với giả thiết).
a) Ta có: \(MI=IN=\dfrac{MN}{2}\)(I là trung điểm của MN)
\(QK=KP=\dfrac{QP}{2}\)(K là trung điểm của QP)
mà MN=QP(Hai cạnh đối trong hình bình hành MNPQ)
nên MI=IN=QK=KP
Ta có: \(MN=2\cdot MQ\)(gt)
mà \(MN=2\cdot MI\)(I là trung điểm của MN)
nên MQ=MI
Xét tứ giác MIKQ có
MI//QK(MN//QP,I\(\in\)MN, \(K\in QP\))
MI=QK(cmt)
Do đó: MIKQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành MIKQ có MI=MQ(cmt)
nên MIKQ là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: \(\widehat{QMN}+\widehat{AMN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{AMN}=180^0-\widehat{QMN}=180^0-120^0\)
hay \(\widehat{AMI}=60^0\)
Ta có: MI=MQ(cmt)
mà AM=MQ(M là trung điểm của AQ)
nên AM=MI
Xét ΔMAI có AM=MI(cmt)
nên ΔMAI cân tại M(Định nghĩa tam giác cân)
Xét ΔMAI cân tại M có \(\widehat{AMI}=60^0\)(cmt)
nên ΔMAI đều(Dấu hiệu nhận biết tam giác đều)
c) Ta có: AI=AM(ΔAMI đều)
mà \(AM=MQ\)(M là trung điểm của AQ)
nên AI=MQ
mà \(MQ=\dfrac{MN}{2}\)(gt)
nên \(AI=\dfrac{MN}{2}\)
Xét ΔAMN có
AI là đường trung tuyến ứng với cạnh MN(I là trung điểm của MN)
\(AI=\dfrac{MN}{2}\)(cmt)
Do đó: ΔAMN vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(\widehat{NAM}=90^0\)
Ta có: AM=MQ(M là trung điểm của AQ)
mà MQ=NP(Hai cạnh đối trong hình bình hành MNPQ)
nên AM=NP
Xét tứ giác AMPN có
AM//NP(MQ//NP, A\(\in\)MQ)
AM=NP(cmt)
Do đó: AMPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMPN có \(\widehat{NAM}=90^0\)(cmt)
nên AMPN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Bài 1.
a) Do hai phân thức bằng nhau , ta có :
( x +2)P( x2 - 22) = ( x - 1)Q( x -2)
=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)
Suy ra : P = x - 1 ; Q = ( x + 2)2
b) Do hai phân thức bằng nhau , ta có :
( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)
= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)
Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2
Q = ( x + 2)( x - 1) = x2 + x + 2
Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)
-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)
-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)
- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)
Hình bạn tự vẽ nhé, bài làm:
a) \(\Delta QMK~\Delta NAM\left(g.g\right)\)
vì: \(\hept{\begin{cases}\widehat{MQK}=\widehat{MNA}=90^0\\\widehat{QMK}=\widehat{MAN}=90^0-\widehat{AMN}\end{cases}}\)
\(\Rightarrow\frac{QM}{NA}=\frac{QK}{MN}\Leftrightarrow QM.MN=QK.NA\)
=> đpcm
b) \(\Delta QMB=\Delta NMA\left(c.g.c\right)\)
vì: \(\hept{\begin{cases}QM=MN\left(gt\right)\\\widehat{MQB}=\widehat{MNA}=90^0\\NA=BQ\left(gt\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}MA=MB\\\widehat{BMQ}=\widehat{AMN}\end{cases}}\)\(\left(1\right)\)
Mà \(\widehat{AMN}+\widehat{QMK}=90^0\Rightarrow\widehat{BMQ}+\widehat{QMK}=\widehat{BMA}=90^0\left(2\right)\)
\(\Delta MQB~\Delta KQM\left(g.g\right)\)
vì: \(\hept{\begin{cases}\widehat{QMB}=\widehat{MKQ}=90^0-\widehat{QMK}\\\widehat{MQB}=\widehat{MQK}=90^0\end{cases}}\)
Kết hợp \(\left(1\right),\left(2\right)\)=> Tam giác AMB vuông cân tại M
=> đpcm
Ta có Δ RSK ∼ Δ PQM ⇔
Chọn đáp án A.