Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)
Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1
\(\left(Ax+B\right)\left(Cx+D\right)=A.C.x^2+\left(B.C+A.D\right)x+AD=50x^2+25x-3\)
\(\hept{\begin{cases}A.C=50\\B.C+A.D=25\\A.D=-3\end{cases}}\)do D=-1 ta tính được\(\hept{\begin{cases}A=3\\B=\frac{42}{25}\\C=\frac{50}{3}\end{cases}}\)
\(\left(\frac{C}{A}-B\right)D^{2017}=-\frac{827}{225}\)
Ta có :
\(\left(Ax+B\right)\left(Cx+d\right)=ACx^2+\left(BC+AD\right)x+BD\)
\(=50x^2+25x-3\)
Mà D=-1=>B=3 .
Ta có :AC và 3C-A=25=>C=10 và A=5 .
Thay vào \(\left(\frac{10}{5}-3\right)\left(-1\right)^{2017}=-1.-1=1\)
\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)
Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)
Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
Xin phép sửa đề nhé: " Nếu \(\left(a+b+c+d\right)\left(1-b-c-d\right)=\left(a-b-c-d\right)\left(a+b+c+d\right)\)thì \(\frac{a}{b}=\frac{c}{d}\)"
Giải
Từ giả thiết suy ra a = b = c = d
Ta có:\(\left(a+b+c+d\right)\left(1-b-c-d\right)=\left(a-b-c-d\right)\left(a+b+c+d\right)\)
Suy ra: \(\frac{a+b+c+d}{a+b+c+d}=\frac{a-b-c-d}{1-b-c-d}\)
Do a = b =c =d nên \(\frac{a+b+c+d}{a+b+c+d}=\frac{a-b-c-d}{1-b-c-d}\Leftrightarrow\frac{4a}{4a}=\frac{4b}{4b}=\frac{4c}{4c}=\frac{4d}{4d}\)
Theo tỉ lệ thức ta có thể suy ra \(\frac{4a}{4b}=\frac{4c}{4d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}^{\left(đpcm\right)}\)
Mạo phép sửa đề:
\(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Rightarrow a^2-\left(b+c+d\right)^2=\left(a+d\right)^2-\left(b-c\right)^2\)
Làm theo cách phân tích con này không đơn giản
(violypic cần nhanh nữa)
Cách Phân phối:
\(\left(ax+b\right)\left(cx+d\right)=acx^2+\left(bc+ad\right)x+bd\)
d=-1=> b=3
ac=50 và 3c-a=25 => c=10 và a=5
Thay vào \(\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)
1