K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Chọn C

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

18 tháng 9 2019

Đáp án: C.

y = -3 là tiệm cận ngang của đồ thị hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

18 tháng 11 2017

a. 32x - 5.(3.2)x + 22x.4 =0

(=) \(\left(\dfrac{3}{2}\right)^{^{2x}}-5.\left(\dfrac{3}{2}\right)^x+2^{2x}.4\) =0

đặt \(\left(\dfrac{3}{2}\right)^x=t\) đk: t > 0

=> pttt: t2 - 5t +4 =0

(=)\(\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

(=) \(\left[{}\begin{matrix}\left(\dfrac{3}{2}\right)^x=1\\\left(\dfrac{3}{2}\right)^x=4\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{3}{2}}4\end{matrix}\right.\)

18 tháng 11 2017

b. 3.52x + 2.72x - 5.(5.7)x =0

(=) \(3+2.\left(\dfrac{7}{5}\right)^{2x}-5.\left(\dfrac{7}{5}\right)^x=0\)

đặt \(t=\left(\dfrac{7}{5}\right)^x\) đk: t > 0

pttt: 3+2t2-5t=0

(=) \(\left[{}\begin{matrix}t=1\\t=\dfrac{3}{2}\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{7}{5}}\dfrac{3}{2}\end{matrix}\right.\)

NV
21 tháng 11 2018

1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm

b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng

Lấy ln hai vế:

\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)

\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)

\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)

\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)

\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)

\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)

2/ Pt đã cho tương đương:

\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)

\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)

Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))

\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)

\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)

\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)

8 tháng 2 2018

Đáp án C