Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(ƯCLN\left(a,b\right)=16\)nên ta đặt \(a=16m,b=16n\)\(\left(m,n\right)=1\).
\(a+b=16m+16n=16\left(m+n\right)=128\Leftrightarrow m+n=8\)
mà \(\left(m,n\right)=1\)nên ta có bảng giá trị:
m | 1 | 3 | 5 | 7 |
n | 7 | 5 | 3 | 1 |
a | 16 | 48 | 80 | 112 |
b | 112 | 80 | 48 | 16 |
Vì ƯCLN(a,b) = 16 \(\Rightarrow\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\left(m,n\in N\right);\left(m,n=1\right)\)
Vì a + b = 128
\(\Rightarrow16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128:16\)
\(\Rightarrow m+n=8\)
Ta được \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=16.5=80\\b=16.3=48\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=16.7=112\\b=16.1=16\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=80\\b=48\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=112\\b=16\end{matrix}\right.\)
Vì ƯCLN ( a;b )=1\(\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\) ( m;n ∈ \(N\));(m;n)=1
Ta có : a+b=128
⇔ 16.m + 16.n = 128
⇔ 16.(m+n) = 128
⇔ m + n =128 : 16 = 8
Mà (m+n)=1⇔\(\left\{{}\begin{matrix}m=3\\n=5\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)
Các cặp giá trị (a;b)tương ứng là ( 16;11;12 ) ; (48;80 ) ; ( 112;16 ) ;(80;48 )
+) Co: (a,b)= 16
=> a=16m;b=16n (m;n thuoc Z; (m,n)=1)
+)Co: ab=[a,b].(a,b)=240.16=3840
=> ab=16m.16n=256mn=3840
=> mn=3840:256=15
=>
m | 1 | 3 |
n | 15 | 5 |
=>
a | 16 | 48 |
b | 240 | 80 |
Vay hai co hai so nguyen duong la: 16;240
48;80
Vì ƯCLN(a;b)=1 \(\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases}\left(m;n\in N\right);\left(m;n\right)=1}\)
Ta có: a + b = 128
=> 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà (m;n)=1 \(\Rightarrow\hept{\begin{cases}m=1\\n=7\end{cases}}\)hoặc \(\hept{\begin{cases}m=3\\n=5\end{cases}}\) hoặc \(\hept{\begin{cases}m=7\\n=1\end{cases}}\) hoặc \(\hept{\begin{cases}m=5\\n=3\end{cases}}\)
Các cặp giá trị (a;b) tương ứng là: (16;112) ; (48;80) ; (112;16) ; (80;48)
vì ƯCLN(a,b) = 16 suy ra a = 16.m, b = 16.n (m,n) = 1
ta có a+b = 128
suy ra 16m+16n = 128
suy ra 16.(m+n) = 128
suy ra m+n = 128/16=8
m , n
1 7
3 5
7 1
5 3
m | |||||||
|
Đặt \(a=16m,b=16n\), \(\left(m,n\right)=1\).
\(ab=16m+16n=128\Leftrightarrow m+n=8\)
mà \(\left(m,n\right)=1\)nên ta có bảng giá trị: