K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Chọn số trung gian là \(\frac{n}{n+2}\)

\(\frac{n+1}{n+2}>\frac{n}{n+2}\)

\(\frac{n}{n+3}< \frac{n}{n+2}\)

\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+2}>\frac{n}{n+3}\)

Vậy \(\frac{n+1}{n+2}>\frac{n}{n+3}\)

10 tháng 2 2017

thật chứ????????

13 tháng 1 2018

Giả sử [(1+2+3+.......+n)-7] chia hết cho 10

=>[(1+2+3+.......+n)-7= \(\frac{n.\left(n+1\right)}{2}\)- 7 \(⋮\)10

=> \(\frac{n.\left(n+1\right)}{2}\)có tận cùng là 7

Nhưng \(\frac{n.\left(n+1\right)}{2}\)chỉ có tận cùng là : 5 ; 2 ; 3 ; 4 ; 0 , không có tận cùng là 7 nên giả thiết trên là sai

Vậy [ ( 1 + 2 + 3 + ... + n ) - 7 ] không chia hết cho 10 với mọi n thuộc N

13 tháng 3 2018

mik hieu dc 3 cau roi

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

NM
2 tháng 11 2021

a. \(625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)

b. với n khác 0 \(3^{2n}=9^n>8^n=2^{3n}\)

Còn với n=0 thì \(3^{2n}=2^{3n}=1\)

9 tháng 3 2017

\(\frac{n}{n+1}\)<\(\frac{n+2}{n+3}\) với n>=0 

18 tháng 7 2016

32n = (32)n = 9n

23n = (23)n = 8n

Vì 9> 8n

=> 32n > 23n

18 tháng 7 2016

\(3^{2n}>2^{3n}\)vì \(3^2>2^3\Leftrightarrow9>8.\)

11 tháng 5 2018

a ) Ta có : 

\(5^{36}=\left(5^3\right)^{12}=125^{12}\)

\(11^{24}=\left(11^2\right)^{12}=121^{12}\)

Do \(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)

b )  \(3^{2n}=\left(3^2\right)^n=9^n\)

\(2^{3n}=\left(2^3\right)^n=8^n\)

Do \(9^n>8^n\)

\(\Rightarrow3^{2n}>2^{3n}\)

Chúc bạn học tốt !!! 

11 tháng 5 2018

a) 536 = ( 53 )12 = 12512   < 1 >

1124 = ( 112 )12 = 12112    < 2 >

Từ < 1 > và < 2 > => 536 = 12512 > 12112 = 1124

=> 536 > 1124.

Vậy 536 > 1124.

b) 32n = 9n     < 1 >

23n = 8n     < 2 >

Từ < 1 > và  < 2 > => 32n =  9n > 8n = 23n.

=> 32n > 23n.

Vậy 32n > 23n.