Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ điều kiện đề bài suy ra:
\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)
\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)
\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)
Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)
\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó
Thử lại vào đk ban đầu thấy thỏa mãn
Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)
Vì \(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)
\(\Rightarrow x=y=1\)
\(\Rightarrow A=1^{2019}+1^{2019}\)
\(\Rightarrow A=2\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\\z=\pm1\end{matrix}\right.\)
Vậy P có thể nhận các giá trị \(P=\left\{-1;1;3\right\}\)
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
Bạn cần làm gì với biểu thức này thì bạn cần ghi rõ, đầy đủ đề bài thì mọi người mới giúp được chứ!