Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Tương tự từ ∆ đồng dạng ta được công thức:
d/d' = f/(f+d')
⇔ d/24 = 12/(12+24) = 1/3
d = 24/3 = 8 (cm)
Đáp án B
Hình vẽ như câu 13 và lập luận ta có: d/d' = f/(f-d') ⇔ d/20 = 10/(20-10) = 1
d = 20 (cm). Vậy vật đặt cách thấu kính d = 20 (cm)
a. Hình vẽ:
b. Ảnh ảo
c. Do A = F nên BO, AI là hai đường chéo của hình chữ nhật ABIO. B' là giao điểm của hai đường chéo BO, AI
=> A'B' là đường trung bình ΔABO
Nên OA' = 1/2.OA = 1/2.20= 10 (cm).
Đáp án: B
Áp dụng công thức:
Với d = 20cm; f = 12 cm => d' = 7,5 cm
Hệ số phóng đại:
Đáp án D
Hình vẽ và lập luận dựa vào ∆ đồng dạng ta có:
d/d' = f/(f-d') ⇔ d/36 = 12/(36-12) = 1/2
d = 18 (cm)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{8}\)
\(\Rightarrow d'=4,8cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{8}{4,8}\Rightarrow h'=1,2cm\)
Vật sáng đặt ngoài tiêu cự vậy qua thấu kính hội tụ cho một ảnh thật, ngược chiều với vật như hình vẽ:
∆ ABO ~ ∆ A’B’O => AB/A'B' = OA/OA' (1)
∆ OIF’ ~ ∆ A’B’F’ => OI/A'B' = OF'/F'A' (2)
Và OI = AB nên từ (1) (2) suy ra:
30/d' = 15/(d'-15 ) giải ra ta được d’ = 30cm. Vậy ảnh thật cách thấu kính 30cm.
Đáp án D
Hình vẽ và lập luận dựa vào ∆ đồng dạng, ta có ảnh ở đây là ảnh ảo và chứng minh được:
=> d/d' = f/(f+d') ⇔ 8/d' = 12/(12+d')
12d’ = 8d’ + 96 ⇔ 4d’ = 96 ⇔ d’ = 24 (cm)
Vậy ảnh là ảo và thấu kính cách d’ = 24 (cm).
Đáp án A
Xét tam giác đồng dạng, ta có công thức:
d/d' = f/(f-d') ⇔ 20/10 = f/(f-10) = 2
2f – 20 = f ⇔ f = 20 (cm)