Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{30}=\dfrac{1}{d'}-\dfrac{1}{20}\)
\(\Rightarrow d'=12cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{20}{12}\Rightarrow h'=1,8cm\)
a)Ảnh thật, ngược chiều và nhỏ hơn vật.
b)Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{30}+\dfrac{1}{d'}\)
\(\Rightarrow d'=20cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
\(\Rightarrow\dfrac{4}{h'}=\dfrac{30}{20}\Rightarrow h'=\dfrac{8}{3}cm\)
a)Ảnh ảo, cùng chiều và nhỏ hơn vật.
b)Khỏang cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\)
\(\Rightarrow d'=\dfrac{36}{7}cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
\(\Rightarrow\dfrac{3}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{12}{7}cm\)
Khoảng cách từ ảnh đến vật:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{15}+\dfrac{1}{d'}\Rightarrow d'=30cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{15}{30}\Rightarrow h'=6cm\)
Vậy ảnh thật, ngược chiều và lớn hơn vật.
Ảnh ảo, ngược chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{25}=\dfrac{1}{d'}-\dfrac{1}{15}\)
\(\Rightarrow d'=9,375cm\)
Độ cao ảnh A'B':
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{40}{h'}=\dfrac{15}{9,375}\Rightarrow h'=25cm\)
a. Bạn tự vẽ ( ảnh ảo )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = AB ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{8}{OA'}=\dfrac{12}{OA'+12}\)
\(\Leftrightarrow OA'=24\left(cm\right)\)
Thế \(OA'=24\) vào \(\left(1\right)\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{8}{24}\)
\(\Leftrightarrow A'B'=3\left(cm\right)\)