Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Áp dụng công thức tính tốc độ cực đại của vật dao động điều hòa
Cách giải:
Ta có vmax = ωA =>ω = vmax/A = 2π rad/s
=> Chu kì dao động: T = 2π/ω = 1 s => Chọn C
Để tìm tần số dao động của con lắc, ta có công thức:
f = 1/T
Trong đó: f là tần số dao động (Hz) T là chu kì dao động (s)
Theo đề bài, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s là T/3. Độ lớn gia tốc của con lắc được tính bằng công thức:
a = -ω²x
Trong đó: a là gia tốc (cm/s²) ω là góc tốc độ góc của con lắc (rad/s) x là biên độ dao động (cm)
Ta có thể tính được ω bằng công thức:
ω = 2πf
Thay vào công thức gia tốc, ta có:
a = -(2πf)²x = -4π²f²x
Đề bài cho biết gia tốc không vượt quá 100 cm/s, nên ta có:
100 ≥ 4π²f²x
Với x = 5 cm, ta có:
100 ≥ 4π²f²(5)
Simplifying the equation:
5 ≥ π²f²
Từ đó ta có:
f² ≤ 5/π²
f ≤ √(5/π²)
f ≤ √(5/π²) ≈ 0.798 Hz
Vậy tần số dao động của con lắc là khoảng 0.798 Hz.
Đáp án A
+ Biểu diễn các vị trí tương ứng trên đường tròn. Để thõa mãn điều kiện bài toán thì khoảng thời 1 60 s gian tương ứng với góc quét Δφ
→ Từ hình vẽ, ta có:
arcos 30 π ωA − arsin 300 π 2 ω 2 A 360 0 T = arcos 30 π 6 ω − arsin 300 π 2 6 ω 2 ω = 1 60
→ Phương trình trên cho ta nghiệm ω = 31,6 rad/s → T = 0,2 s
Chú ý là vận tốc trung bình khác với tốc độ trung bình
Vận tốc trung bình trong một chu kì bằng 0.
Tốc độ trung bình = Quãng đường đi được/ thời gian đi
=> \(v_{tb} = \frac{S}{t} \)
Quãng đường đi được trong một chu kì là \(S = 4A.\)
=> \(v_{tb} = \frac{S}{t} = \frac{4A}{T} =\frac{4.A.\omega}{2\pi} = \frac{4v_{max}}{2\pi} = \frac{4.31,4.10^{-2}}{2.3,14} = 0,2 m/s.\)
Chọn đáp án.A
Vtb=\(\dfrac{2V_{max}}{\pi}\) =\(\dfrac{2.31,4}{3,14}\)=20cm/s
Áp dụng: \(v_{max}= \omega A \Rightarrow \omega = \frac{v_{max}}{A} = \frac{10\pi}{5} = 2\pi \ (rad/s)\)
\(\Rightarrow T = \frac{2\pi}{\omega} = 1 s\)