Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Động năng của vật ở chân dốc bằng thế năng ở đỉnh dốc
Thế năng ở đỉnh dốc: Wt = m.g.h
=> Động năng của vật tại chân dốc không phụ thuộc vào góc nghiêng.
Chọn mốc thế năng tại mặt đất
Thế năng của vật tại vị trí đỉnh của mặt phẳng nghiêng là:
\(W_t=mgh=mgSsin30^0=10mg\)
Động năng của vật tại chân mặt phẳng nghiêng là:
\(W_đ=\dfrac{1}{2}mv^2\)
Lại có độ biến thiên cơ năng bằng công của lực ma sát
Hay \(W_đ-W_t=F_{ms}S\Leftrightarrow\dfrac{1}{2}mv^2-10mg=mg\mu S\)
\(\Leftrightarrow\dfrac{1}{2}v^2-10.10=10.0,1.20\Rightarrow v=4\sqrt{15}\left(đvvt\right)\)
a) Khi vật ở trên mặt phẳng nghiêng, ta xét hệ trục tọa độ Oxy sao cho Ox song song với mặt phẳng nghiêng còn Oy trùng với phương của phản lực \(\overrightarrow{N}\). Chọn chiều (+) là chiều chuyển động của vật. Gọi \(m\left(kg\right)\) là khối lượng của vật. Khi đó \(P=10m\left(N\right)\). Hơn nữa, dễ thấy góc nghiêng so với phương ngang của mặt phẳng nghiêng là \(30^o\). Ta chiếu \(\overrightarrow{P}\) lên 2 trục Ox, Oy thành 2 lực \(\overrightarrow{P_x},\overrightarrow{P_y}\). Khi đó:
\(P_y=P.\cos30^o=5m\sqrt{3}\left(N\right)\) và \(P_x=P.\sin30^o=5m\left(N\right)\).
Áp dụng định luật II Newton: \(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\) (*)
Chiếu (*) lên Ox, ta được \(P_x=m.a\) \(\Rightarrow5m=m.a\) \(\Rightarrow a=5\left(m/s^2\right)\)
b) Khi vật di chuyển trên mặt phẳng ngang, ta xét trên hệ trục tọa độ Oxy với Ox song song với mặt phẳng ngang còn Oy trùng với phương của phản lực \(\overrightarrow{N'}\). Vật mất \(t=\dfrac{v}{a}=\dfrac{10}{5}=2\left(s\right)\) để đi đến chân mặt phẳng nghiêng.
Gọi \(v\) là vận tốc khi vật tới chân mặt phẳng nghiêng. Ta có \(v=\sqrt{2as}=\sqrt{2.5.10}=10m/s\).
Áp dụng định luật II Newton: \(\overrightarrow{P}+\overrightarrow{N'}+\overrightarrow{F_{ms}}=m\overrightarrow{a'}\) (**)
Chiếu (**) lên Oy, ta được \(N'=P=10m\left(N\right)\)
\(\Rightarrow F_{ms}=\mu.N'=0,1.10m=m\left(N\right)\)
Chiếu (**) lên Ox, ta được \(-F_{ms}=m.a'\Rightarrow a'=\dfrac{-F_{ms}}{m}=\dfrac{-10m}{m}=-10\left(m/s^2\right)\)
Do đó, gọi \(s,t\) lần lượt là quãng đường vả thời gian vật đi được từ khi đến chân mặt phẳng nghiêng đến khi dừng lại.
Khi đó \(t=\dfrac{-v}{a'}=\dfrac{-10}{-10}=1\left(s\right)\) và \(s=vt+\dfrac{1}{2}a't^2=10.1+\dfrac{1}{2}.\left(-10\right).1^2=5\left(m\right)\)
Như vậy, tổng quãng đường, thời gian vật đi được cho tới khi dừng lại là:
\(S=10+5=15\left(m\right)\)
\(T=2+1=3\left(s\right)\)
Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động.
Vật chịu tác dụng của các lực
Theo định luật II newton ta có:
Chiếu Ox ta có :
Vận tốc của vật ở chân dốc.
Áp dụng công thức
Khi chuyển động trên mặt phẳng ngang: Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có
Chiếu lên trục Ox:
Chiếu lên trục Oy: N – P = 0N = P=mg
Để vật dừng lại thì
Áp dụng công thức:
Và
Chọn mốc thế năng tại chân mặt phẳng nghiêng.
a) Cơ năng tại đỉnh mặt phẳng nghiêng
\(W=mgh=mg.AB\sin 30^0=1,2.10.AB.\sin 30^0=24\)
\(\Rightarrow AB = 4(m)\)
b) Tại D động năng bằng 3 lần thế năng, ta có: \(W_đ=3W_t\Rightarrow W = 4W_t \Rightarrow W_t = 24: 4 = 6(J)\)
\(\Rightarrow mgh_1=mg.DB\sin 30^0=1,2.10.DB.\sin 30^0=6\)
\(\Rightarrow DB = 1(m)\)
c) Tại trung điểm mặt phẳng nghiêng
Thế năng: \(W_t = mgh_2=mg.\dfrac{AB}{2}\sin 30^0=1,2.10.2.\sin 30^0=12(J)\)
Động năng: \(W_đ=W-W_t=24-12=12(J)\)
\(\Rightarrow \dfrac{1}{2}.1,2.v^2=12\)
\(\Rightarrow 2\sqrt 5(m/s)\)
d) Công của lực ma sát trên mặt ngang: \(A_{ms}=\mu mg.S\)
Theo định lí động năng: \(W_{đ2}-W_{đ1}=-A_{ms}\Rightarrow 0-24=-\mu.1,2.10.1\Rightarrow \mu = 2\)
anh ơi , anh quên tính vận tốc của vật tại chân mặt phẳng nghiêng kìa . Đãng trí quá .
Động năng của vật ở chân dốc bằng thế năng ở đỉnh dốc
Thế năng ở đỉnh dốc: Wt = m.g.h
=> Động năng của vật tại chân dốc không phụ thuộc vào góc nghiêng.