Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\begin{cases} A^2=\dfrac{v_{0}^2}{\omega^2} \\ A^2=x^2+\dfrac{v_{0}^2}{4\omega^2} \end{cases}\)
\( \Rightarrow x=\dfrac{\sqrt{3}A}{2}\)
Góc quét \(\dfrac{\pi}{3}=\dfrac{2.\pi}{T}.\dfrac{\pi}{15} \Rightarrow T=\dfrac{2\pi}{5}\)
Ta có: \( \dfrac{3\pi}{10}=\dfrac{\pi}{5}+\dfrac{\pi}{10}=\dfrac{T}{2}+\dfrac{\pi}{10}\)
Nên vật đi được quãng đường \(3A=12 \Rightarrow A=4 \Rightarrow v_{0}=20\)
Đáp án C
Thời điểm ban đầu v = v m a x vật đi qua vị trí cân bằng, đến thời điểm t 1 vận tốc giảm một nửa (động năng giảm 4 lần) → t 1 = T 6 = 1 6 s → T = 1 s → ω = 2π rad/s.
Đến thời điểm t 2 = 5 12 s tương ứng với góc quét Δ φ = ω t 2 = 150 0
→ Vật đi được quãng đường s = A + A 2 = 12 cm → A = 8 cm.