Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
Phương trình động lực học:
Chiếu (1) lên phương song song với mặt phẵng nghiêng (phương chuyển động), chiều dương hướng xuống (cùng chiều chuyển động), ta có:
Psina – Fms = ma1
Chiếu (1) lên phương vuông góc với mặt phẵng nghiêng (vuông góc với phương chuyển động), chiều dương hướng lên, ta có:
N - Pcosa = 0
→ N = Pcosa = mgcosa
→ Fms = m1N = m1mgcosa.
Gia tốc trên mặt phẵng nghiêng:
Vận tốc của vật tại B:
Gia tốc của vật trên mặt phẵng ngang:
Trên mặt phẵng ngang ta có:
theo định luật II niu tơn trên mặt phẳng nghiêng AB
\(\overrightarrow{F_{ms}}+\overrightarrow{N}+\overrightarrow{P}=m.\overrightarrow{a}\) (1)
chiếu (1) lên trục Ox phương song song với mặt phẳng nằm nghiêng chiều dương cùng chiều chuyển động
\(sin\alpha.P-\mu.N=m.a\) (2)
chiếu (1) lên trục Oy phương vuông gốc với mặt phẳng, chiều dương hướng lên trên
N=\(cos\alpha.P\) (3)
từ (2),(3)
\(\Rightarrow sin\alpha.g-\mu.g.cos\alpha=a\)
\(\Rightarrow a\approx4,1\)m/s2
vận tốc lúc vật tại B
\(v^2-v_0^2=2as_{AB}\Rightarrow v\approx2,875\)m/s
Định luật II Niu-tơn:
\(\overrightarrow{F}+\overrightarrow{F_{ms}}+\overrightarrow{P}=m\cdot\overrightarrow{a}\)
Ox: \(Psin\alpha-F_{ms}=m\cdot a\)
Oy: \(N-Pcos\alpha=0\Rightarrow N=Pcos\alpha=mgcos\alpha\)
\(F_{ms}=\mu_1\cdot N=\mu_1\cdot mgcos\alpha\)
Gia tốc mặt phẳng nghiêng:
\(a=\dfrac{Psin\alpha-F_{ms}}{m}=\dfrac{mgsin\alpha-\mu_1mgcos\alpha}{m}=g\left(sin\alpha-\mu_1cos\alpha\right)=10\left(sin30-0,1cos30\right)\approx4,13\)m/s2
Chọn mốc thế năng tại mặt nằm ngang BC
Theo định luật bảo toàn năng lượng
W A = W C + A m s
Mà W A = m g . A H = m .10 = 10. m ( J ) ; W C = 0 ( J ) A m s = μ m g cos α . A B + μ m g . B C = 0 , 1. m .10. cos 30 0 . A H sin 30 0 + 0 , 1. m .10. B C ⇒ A m s = m . 3 . + m . B C ⇒ 10. m = 0 + m 3 + m . B C ⇒ B C = 8 , 268 ( m )
a. Ta có
sin α = 1 2 ; cos α = 3 2
Công của trọng lực
A P = P x . s = P sin α . s = m g sin α . s A P = 2.10. 1 2 .2 = 20 ( J )
Công của lực ma sát
A f m s = − f m s . s = − μ N . s = − μ . m g cos α . s A f m s = − 1 3 .2.10. 3 2 .2 = − 20 ( J )
b. Áp dụng định lý động năng
A = W d B − W d A ⇒ A P → + A f → m s = 1 2 m v B 2 − 1 2 m v A 2 ⇒ 20 − 20 = 1 2 .2 v B 2 − 1 2 .2.2 2 ⇒ v B = 2 ( m / s )
c. Áp dụng định lý động năng
A = W d C − W d B ⇒ A f → m s = 1 2 m v C 2 − 1 2 m v B 2
Công của lực ma sát
A f m s = − f m s . s = − μ N . s = − μ . m g . s / = − μ .2.10.2 = − μ 40 ( J )
Dừng lại
v C = 0 ( m / s ) ⇒ − μ 40 = 0 − 1 2 .2.2 2 ⇒ μ = 0 , 1
Chọn mốc thế năng tại mặt nằm ngang BC
a. Ta có cotan α = B H A H = 0 , 6 0 , 1 = 6
Mà W A = m . g . A H = m .10.0 , 1 = m ( J ) ; W B = 1 2 m v B 2 ( J ) A m s = μ m g cos α . A B = 0 , 1. m .10. cos α . A H sin α = m . c o tan α .0 , 1 = 0 , 6 m ( J )
Theo định luật bảo toàn năng lượng
W A = W B + A m s ⇒ m = 1 2 m v B 2 + 0 , 6 m ⇒ v B = 0 , 8944 ( m / s )
b. Theo định luật bảo toàn năng lượng
⇒ m = 1 2 m v B 2 + 0 , 6 m ⇒ v B = 0 , 8944 ( m / s )
Mà W A = m g . A H = m .10.0 , 1 = m ( J ) ; W C = 0 ( J ) A m s = μ m g cos α . A B + μ m g . B C = 0 , 6 m + m . B C ⇒ m = 0 + 0 , 6 m + m . B C ⇒ B C = 0 , 4 ( m )
a, Khi vật đang ở A, động năng của vật là cực đại và nó bằng thế năng của vật tại B (Wt max):
Wtmax = mgz = 4 . 10 . 0,8 = 32 (J)
⇒ \(\dfrac{1}{2}mv^2=32\)
⇒ v = 4 (m/s)
Vậy khi đến B v = 4 m/s
b, Do có lực ma sát nên cơ năng không được bảo toàn
Độ biến thiên cơ năng bằng công của lực ma sát
Tại B, cơ năng của vật là
W = Wđmax = 32 (J)
Tại C cơ năng của vật là
W = Wt + Wđ = 40. BC
Ta có 40BC - 32 = F . BC
⇒ 40BC - 32 = N . 0.25 . BC
⇒ 40BC - 32 = 10BC
⇒ BC = \(\dfrac{32}{30}=1,06\left(m\right)\)
Tại C cơ năng của vật tại sao lại bằng 40. BC vậy cậu ?