Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=24cm\)
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{8}{24}\Rightarrow h'=9cm\)
b)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{12}+\dfrac{1}{d'}\Rightarrow d'=12cm\)
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{12}{12}\Rightarrow h'=3cm\)
c)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{4}+\dfrac{1}{d'}\Rightarrow d'=-12cm\)
\(\Rightarrow TH\) không xảy ra.
d)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{18}+\dfrac{1}{d'}\Rightarrow d'=9cm\)
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{18}{9}\Rightarrow h'=1,5cm\)
Hình vẽ thì em tham khảo nhé!
Áp dụng công thức: \(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\) và độ cao ảnh \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
a) \(\dfrac{1}{6}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=24cm\)
Độ cao ảnh: \(\dfrac{h}{h'}=\dfrac{8}{24}=\dfrac{1}{3}\)
Đề không cho độ cao vật nên chị làm đến đây, nếu có cho thì em thay vào h rồi tính h' là chiều cao ảnh cần tìm
\(b,\) - Ảnh ảo
- Cùng chiều
- Ảnh lớn hơn vật
\(b,\) Xét \(\Delta OAB\sim\Delta OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\left(1\right)\)
Xét \(\Delta FAB\sim\Delta FOI\)
\(\dfrac{AB}{A'B'}=\dfrac{A}{FO}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{FA}{FO}\) mà \(FA=OF-OA\)
\(\rightarrow\dfrac{OA}{OA'}=\dfrac{OF-OA}{OF}\)
\(\rightarrow\dfrac{7}{OA'}=\dfrac{21-7}{21}\)
\(\rightarrow OA'=10,5\left(cm\right)\)
Đặc điểm:
- Ảnh thật
- Ảnh lớn hơn vật và ngược chiều với vật
Tóm tắt:
AB = h = 2cm
OF = OF' = f = 8cm
AO = d = 12cm
A'B' = h = ?
A'O = d' = ?
Giải:
\(\Delta ABF\sim\Delta OIF\)\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{AO-OF}{OF}\Leftrightarrow\dfrac{2}{A'B'}=\dfrac{12-8}{8}\)
\(A'B'=\dfrac{2.8}{12-8}=4cm\)
\(\Delta ABO\sim\Delta A'B'O\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AO}{A'O}\Leftrightarrow\dfrac{2}{4}=\dfrac{12}{A'O}\Rightarrow A'O=\dfrac{12.4}{2}=24cm\)
Đặc điểm:
- Ảnh ảo
- Ảnh lớn hơn vật và cùng chiều với vật
Tóm tắt:
AB = h = 2cm
OF = OF' = f = 8cm
AO = d = 6cm
A'B' = ?
A'O = ?
Giải:
\(\Delta OFI\sim\Delta AFB\)
\(\Rightarrow\dfrac{OF}{AF}=\dfrac{OI}{AB}\Leftrightarrow\dfrac{OF}{OF-OA}=\dfrac{A'B'}{AB}\Leftrightarrow\dfrac{8}{8-6}=\dfrac{A'B'}{2}\)
\(\Rightarrow A'B'=\dfrac{8.2}{8-6}=8cm\)
\(\Delta A'B'O\sim\Delta ABO\)
\(\Rightarrow\dfrac{A'B'}{AB}=\dfrac{A'O}{AO}\Leftrightarrow\dfrac{8}{2}=\dfrac{A'O}{6}\Rightarrow A'O=\dfrac{8.6}{2}=24cm\)
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\Rightarrow d'=\dfrac{36}{7}cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{12}{7}cm\)
cho mình hỏi d' tính làm sao vậy ạ?