K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách chọn 2 bạn bất kì trong 10 bạn đó là \(C_{10}^2\)

Cách 1:

Trường hợp 1: Hai bạn được chọn gồm 1 nam và 1 nữ

Có 7 cách chọn một bạn nam

Có 3 cách chọn một bạn nữ

=> Có 3.7 =21 cách chọn

Trường hợp 2: Hai bạn được chọn đều là nữ

Số cách chọn 2 trong 3 bạn nữ là: \(C_3^2\)

=> Xác suất để trong hai người được chọn có ít nhất một nữ là: \(\frac{{21 + C_3^2}}{{C_{10}^2}} = \frac{8}{{15}}\)

Chọn B.

Cách 2:

Gọi A là biến cố: “trong hai người được chọn có ít nhất một nữ”

Biến cố đối \(\overline A \): “trong hai người được không có bạn nữ nào” hay “hai người được chọn đều là nam”

Ta có: Số cách chọn 2 trong 7 bạn nam là \(n(\overline A ) = C_7^2\)

\(\begin{array}{l} \Rightarrow P(\overline A ) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{{21}}{{45}} = \frac{7}{{15}}\\ \Rightarrow P(A) = 1 - P(\overline A ) = 1 - \frac{7}{{15}} = \frac{8}{{15}}\end{array}\)

Chọn B.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega  \right) = C_{7}^2 = 21\)

Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.

Cách chọn  một bạn nam là: 3 cách chọn

Cách chọn một bạn nữ là: 4 cách chọn

Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).

Chọn A

26 tháng 4 2023

a. \(C^1_7=7\left(cách\right)\)

b. \(C^1_3=3\left(cách\right)\)

c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega  \right) = C_{12}^6 = 924\).

Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).

NV
21 tháng 4 2023

Không gian mẫu: \(C_{10}^3\)

Số cách chọn sao cho có 2 nữ 1 nam là: \(C_6^2.C_4^1\)

Xác suất: \(P=\dfrac{C_6^2.C_4^1}{C_{10}^3}=\dfrac{1}{2}\)

loading...    

NV
21 tháng 4 2023

Không gian mẫu:

Chọn 5 người từ 15 người để lập nhóm 1 có \(C_{15}^5\) cách, chọn 5 người từ 10 người còn lại để lập nhóm 2 có \(C_{10}^5\) cách, tổ 3 có \(C_5^5\) cách

\(\Rightarrow C_{15}^5.C_{10}^5.C_5^5\) cách chọn bất kì

Bây giờ ta tính số cách chia sao cho có ít nhất 1 nhóm không có nữ:

Do 7 nữ luôn chia được vào ít nhất 2 nhóm sao cho mỗi nhóm có 5 người, do đó chỉ có nhiều nhất 1 nhóm (trong số 3 nhóm) chỉ toàn là nam.

Chọn 1 nhóm từ 3 nhóm để xếp 5 nam: \(C_3^1\) cách

Chọn 5 nam từ 8 nam để xếp vào nhóm nói trên: \(C_8^5\) cách

Còn 10 em xếp vào 2 nhóm còn lại: \(C_{10}^5.C_5^5\) cách

\(\Rightarrow C_3^1.C_8^5.C_{10}^5.C_5^5\) cách xếp sao cho có 1 ít nhất nhóm ko có nữ

\(\Rightarrow C_{15}^5.C_{10}^5.C_5^5-C_3^1.C_8^5.C_{10}^5.C_5^5\) cách xếp thỏa mãn

Xác suất: ...

21 tháng 4 2023

Anh ơi! Câu này làm theo cách biến cố đối, hai học sinh nữ đứng cạnh nhau thì như nào ạ, em làm được trực tiếp còn làm gián tiếp không được ạ. 

https://hoc24.vn/cau-hoi/doi-tuyen-hoc-sinh-gioi-cua-mot-truong-thpt-co-8-hoc-sinh-nam-va-4-hoc-sinh-nu-trong-buoi-le-trao-phan-thuong-cac-hoc-sinh-tren-duoc-xep-thanh-mot-hang-ngang-tinh-xac-suat-de-khi-xep-sao-cho-2-hoc.7929973126107

a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)

b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)

b)    Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)

c)     Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)

Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)

a: Sô cách chọn là: \(C^6_{40}\left(cách\right)\)

b: Số cách chọn là:

\(C^4_{25}\cdot C^2_{15}+C^5_{25}\cdot C^1_{15}=2125200\left(cách\right)\)

 

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_{45}^2.C_{45}^2\)

a) Gọi là biến cố “Trong 4 bạn được chọn có ít nhất 1 bạn nam”, ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn không có bạn nam nào”

\(\overline A \) xảy ra khi các bạn được chọn đều là nữ. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{20}^2.C_{24}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{874}}{{16335}}\)

Suy ra, xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{874}}{{16335}} = \frac{{15461}}{{16335}}\)

b) Gọi là biến cố “Trong 4 bạn được chọn có đủ cả nam và nữ” ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn đều là nữ hoặc đều là nam”

\(\overline A \) xảy ra khi các bạn được chọn đều là nữ hoặc nam. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2\)

Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{1924}}{{16335}}\)

Suy ra, xác suất của biến cố là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{1924}}{{16335}} = \frac{{14411}}{{16335}}\)