K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Chọn C

Số phần tử của không gian mẫu là 

Gọi A là biến cố "không có hai học sinh nữ nào đứng cạnh nhau".

Mỗi phần tử của A tương ứng với 1 hàng ngang gồm 11 bạn đã cho mà không có hai nữ xếp cạnh nhau. Để xếp được 1 hàng như vậy ta thực hiện liên tiếp hai bước:

Bước 1: Xếp 6 bạn nam thành một hàng ngang, có 6!= 720 cách

Bước 2: Xếp 5 bạn nữ vào 7 vị trí xen giữa hai nam hoặc ngoài cùng (để 2 nữ không cạnh nhau), có  A 7 5 = 2520 cách.

Vậy n(A) =720.2520 = 1814400

Xác suất cần tìm là 

19 tháng 7 2017

Đáp án B

– Số phần tử của không gian mẫu  n Ω =10!

* Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

* Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

+ Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

+ Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

xxxx

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là:  n =2-2.9=18432.

7 tháng 9 2019

Chọn B

Số phần tử của không gian mẫu là 

Sắp 5 học sinh nam thành một hàng ngang, có 5! cách (tạo ra  khoảng trống).

Chọn 3 khoảng trống trong 6 khoảng trống để xếp 3 nữ, có C 6 3  cách chọn. Khi đó, số cách xếp 3 bạn nữ là  C 6 3 .3! cách.

Vậy xác suất cần tìm là 

23 tháng 6 2016

lại lần nữa:

Để mình làm lại :

Số cách xếp bất kỳ 13 học sinh là: \(\left|\Omega\right|=P_{13}\)
Số cách xếp có ít nhất 2 học sinh nữ cạnh nhau là: \(2.P_{12}\)
Số cách xếp không có 2 học sinh nữ cạnh nhau là:

\(P_{13}-2P_{12}=11P_{12}\)
Goi A là biến cố không có 2 học sinh nữ cạnh nhau
\(\Rightarrow\left|A\right|=11.P_{12}\)
\(\Rightarrow P\left(A\right)=\)\(\frac{\left|A\right|}{\left|\Omega\right|}\)\(=\frac{11}{13}\)

15 tháng 7 2019

Tại sao chỗ xếp ít nhất 2 banj nữ cạnh nhau lại là P12.Nếu đã sắp xếp 2 bạn nữ đứng cạnh nhau rồi thì chỉ còn 11 bạn và sắp xếp theo cách 11! thôi chứ.Là 2!.11!,tại s lại là 2.12!??

3 tháng 1 2018

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5!x5!= 120 2

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5!x5!= 120 2

Theo quy tắc cộng có  120 2 +  120 2 =2x  120 2 cách xếp thoả mãn.

Vậy xác suất cần tính  2 ( 5 ! ) 2 10 ! = 1 126

3 tháng 1 2017

Chọn C

Chọn mỗi tổ hai học sinh nên số phần tử của không gian mẫu là 

Gọi biến cố A: “Chọn 4 học sinh từ 2 tổ sao cho 4 em được chọn có 2 nam và 2 nữ”

Khi đó, xảy ra các trường hợp sau:

TH1: Chọn 2 nam ở Tổ 1, 2 nữ ở Tổ 2. Số cách chọn là

TH2:  Chọn 2 nữ ở Tổ 1, 2 nam ở Tổ 2. Số cách chọn là .

TH3: Chọn ở mỗi tổ 1 nam và 1 nữ. Số cách chọn là 

Suy ra, n(A) = 

Xác suất để xảy ra biến cố A là: 

15 tháng 4 2018


13 tháng 2 2018

Đáp án D 

Số cách xếp 2 bạn nữ là  

Số cách xếp 2 bạn nữ đứng cạnh nhau là  

Xác suất 2 bạn nữ đứng cạnh nhau là  

Xác suất 2 bạn nữ không đứng cạnh nhau là