Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có, lực kéo đàn hồi cần tác dụng lên đầu kia của thanh thép để thanh dài thêm 2,5 mm là: F d h = k . ∆ l = E S l 0 ∆ l = 2 . 10 11 1 , 5 . 10 - 4 5 2 , 5 . 10 - 3 = 15000 N
Đáp án: B
d = 20 mm
E = 2.1011 Pa
Fnén = 1,57.105 N
Tìm \(\varepsilon=\dfrac{\left|\Delta t\right|}{l_0}=?\)
Ta có: \(F=k\Delta l=\dfrac{ES}{l_0}\left|\Delta t\right|\)
\(\Rightarrow\dfrac{\Delta l}{l_0}=\dfrac{F}{ES}=25.10^4=0,25.10^{-2}\)
Vậy độ biến dạng tỉ đối của thanh là : \(\dfrac{\left|\Delta l\right|}{l_0}=2,5.10^{-3}\)
Ta có : F = k△l = \(\frac{E.S}{l_0}\). | △l |
→ \(\frac{\triangle l}{l_0}=\frac{F}{E.S}=\frac{157.10^3}{2.10^{11}.\left(10^{-2}\right)^2.3,14}=25.10^{-4}=0,25.10^{-2}\)
Vậy độ biến dạng tỉ đối của thanh là \(\frac{\triangle l}{l_0}=0,25.10^{-2}\)
@phynit
Em trả lời 100% . Không có sự tự hỏi tự trả lời đâu ạ ( Em nói để thầy biết và không nghĩ oan cho em )
Ta có : F = k\(\triangle\)l = \(\frac{E.S}{l_o}\). | \(\triangle\)l |
→ \(\frac{\triangle l}{l_0}=\frac{F}{E.S}=\frac{157.10^3}{2.10^{11}.\left(10^{-2}\right)^2.3,14}\)= 25 . 10-4 = 0,25 .10-2
Vậy độ biến dạng tỉ đối của thanh là \(\frac{\triangle l}{l_0}\)= 0,25 . 10-2
σ = \(\frac{F}{S}=\frac{F}{\frac{d^2.\pi}{4}}=\frac{3450}{\frac{3,14}{4}.\left(5.10^{-2}\right)^2}=17,57.10^5\)
ϵ = \(\frac{\triangle l}{l_0}=\frac{\sigma}{E}=\frac{17,57.10^5}{7.10^{10}}=0,000025\)
Thôi nhá
Đừng tử hỏi tự trả lời nữa
Không ai cạnh tranh đc đâu
Ta có:
F = E S Δ l l 0 ⇒ F = 2.10 11 .2.10 − 4 . 1 , 5.10 − 3 4 ⇒ F = 15000 ( N )
Thanh thép có thể chịu đựng được các trọng lực nhỏ hơn Fb
P < F b = σ b S = 6 , 86.10 8 .2.10 − 4 ⇒ P < 137200 ( N )