Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{2\pi.x}{\lambda}=0,02\pi.x\)
\(\Rightarrow \lambda=\dfrac{2}{0,02}=100 cm\)
\(u=2\cos\left(20\pi\left(t-\frac{x}{25}\right)\right)=2\cos\left(20\pi t-\frac{4\pi x}{5}\right)\)
\(\Rightarrow\lambda=\frac{5}{2}\left(m\right)=250\left(cm\right)\)
\(f=\frac{\omega}{2\pi}=\frac{20\pi}{2\pi}=10\left(Hz\right)\)
\(\Rightarrow v=f.\lambda=10.250=2500\left(cm/s\right)=25\left(m/s\right)\)
Đáp án C
Ta có: \(\frac{2\pi}{\lambda}=0,02\pi\Rightarrow\lambda=100\left(cm\right)\)
\(\Rightarrow v=\lambda.f=\frac{\omega}{2\pi}\lambda=200\left(cm/s\right)\)
Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)
Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)
Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Đáp án C
Từ phương trình ta có λ = 3m; f = 50Hz => v = λf = 3.50 = 150 m/s