Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(323=17\times19\)
nên số dư của \(a\)khi chia cho \(323\)là một số chia cho \(17\)dư \(5\)nên số dư thuộc tập hợp:
\(\left\{5,22,39,56,73,90,107,124,141,158,175,192,209,226,243,260,277,294,311\right\}\)
và số dư của \(a\)khi chia cho \(323\)là một số chia cho \(19\)dư \(12\)nên số dư thuộc tập hợp
\(\left\{12,31,50,69,88,107,126,145,164,183,202,221,240,259,278,297,316\right\}\).
Ta thấy trong hai tập hợp trên chỉ chung phần tử \(107\).
Do đó \(a\)chia cho \(323\)dư \(107\).
bạn giải lời giúp mk nh xong thi mk tk và kb cho😆😆😆😆😆😆😆😆😆
1) Gọi số cần tìm là A(A thuộc N)
Vì A chia 4 dư 3, ... nên A + 8 chia hết cho 4, 17, 19.
=> A + 8 chia hết cho 1292 (ƯCLN(4; 17; 19) = 1)
Số dư của A khi chia cho 1292 là:
1292 - 8 = 1284
Vậy A chia 1292 dư 1284.
2) Vì 2a - 3b chia hết cho 13 nên 4(2a - 3b) chia hết cho 13.
Xét tổng:
4(2a - 3b) - (8a - b)
= 8a - 12b - 8a + b
= (12b + b) - (8a - 8a)
= 13b chia hết cho 13.
Mà 4(2a -3b) chia hết cho 13 nên 8a - b chia hết cho 13(ĐPCM)