K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

Đáp án cần chọn là: A

Vì a chia cho 8 dư 6⇒(a+2)⋮8

a chia cho 12 dư 10 ⇒(a+2)⋮12

Do đó (a+2)∈BC(12;8) mà BCNN(12,8)=24.

Do đó (a+2)⋮24⇒a chia cho 24 dư 22

18 tháng 8 2015

bày đặt chảnh chảnh 

23 tháng 11 2017
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
21 tháng 11 2020

1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 .                                                                                                  2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6.                                                                                      Mình ko chắc đâu nha!!!

22 tháng 11 2020

câu 1 sai đề đúng ko bạn

phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
15 tháng 12 2019

Bài giải

a) Theo đề bài, ta có a - 1 \(⋮\)6;    a - 5 \(⋮\)7; a - 3 \(⋮\)8     (dư thì mình phải bớt); a \(\in\)N* và a nhỏ nhất

Suy ra a - 1 - 5 - 3 \(⋮\)6; 7; 8

Ta có a - 1 - 5 - 3 = a - (1 + 5 + 3) = a - 9

Nên a - 9 \(⋮\)6; 7; 8

Vì a - 9 \(⋮\)6; 7; 8

\(\Rightarrow\)a - 9 \(\in\)BC (6; 7; 8)

6 =2.3

7 = 7

8 = 23

BCNN (6; 7; 8) = 23.3.7 = 168

BC (6; 7; 8) = B (168) = {0; 168; 336; 504; ...}

Mà a \(\in\)N* và a nhỏ nhất

Suy ra a - 9 = 168

           a       = 168 + 9

           a       = 177

Vậy a = 177

Mấy câu còn lại tự làm (dựa vào cách làm của mình)