Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi viết thêm một chữ số 7 vào tận cùng bên phải một số thì số mới gấp số ban đầu là 10 lần và 7 đơn vị.
Số cần tìm là:
(754 - 7) : (10 - 1) = 83
Lời giải:
Giả sử số $a$ có $n$ chữ số. Khi đó:
$\overline{2023a}=2023.10^n+a=2022.10^n+10^n+a$
Để $\overline{2023a}\vdots 2022$ thì $10^n+a\vdots 2022$
$\Rightarrow 10^n+a\geq 2022$
Nếu $a$ có 3 chữ số: $10^n+a\leq 10^3+999=1999$ (không thỏa mãn) (vô lý)
$\Rightarrow a$ phải có từ 4 chữ số trở lên
$\Rightarrow n\geq 4$.
Đặt $10^n+a=2022k$ với $k$ tự nhiên. Do $a$ có ít nhất 4 chữ số nên:
$2022k=10^n+a\geq 10^4+1000=11000$
$\Rightarrow k\geq 6$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất, Suy ra $k=6$
$10^n+a=2022.6=12132$
$\Rightarrow n=4; a=2132$
Vậy số cần tìm là $2132$
a, Gọi số cần tìm là a
Vì theo đề bài cho : cùng thêm vào tử và mẫu của phân số \(\frac{24}{35}\)ta được một phân số mới có giá trị bằng \(\frac{4}{5}\)nên \(\frac{24+a}{35+a}=\frac{4}{5}\)
\(\Leftrightarrow5(24+a)=4(35+a)\)
\(\Leftrightarrow120+5a=140+4a\)
\(\Leftrightarrow5a+120=4a+140\)
\(\Leftrightarrow5a+120-4a=140\)
\(\Leftrightarrow5a-4a+120=140\)
\(\Leftrightarrow a=20\)
Vậy a = 20
b, Gọi số cần tìm là b
Vì đề bài cho : thêm vào mẫu và bớt ở tử của phân số \(\frac{26}{29}\)ta được một phân số mới có giá trị bằng \(\frac{2}{3}\)nên ta có :
\(\frac{26-b}{29+b}=\frac{2}{3}\)
\(\Leftrightarrow3(26-b)=2(29+b)\)
\(\Leftrightarrow78-3b=58+2b\)
\(\Leftrightarrow78-3b=2b+58\)
\(\Leftrightarrow78-3b+2b=58\)
\(\Leftrightarrow78-5b=58\)
\(\Leftrightarrow5b=20\Leftrightarrow b=4\)
Vậy số cần tìm đó là 4
Ta có: A=777…77
=>A+a=777…77+a chia hết cho 35.
=>777…70+(7+a) chia hết cho 35
=>777…7.10+(7+a) chia hết cho 35
=>111…11.7.5.2+(7+a) chia hết cho 35
=>111…11.2.35+(7+a) chia hết cho 35
=>7+a chia hết cho 35
=>7+a=B(35)=(0,35,70,…)
=>a=(-7,28,63,…)
Vì a là số tự nhiên bé nhất
=>a=28
Vậy a=28