K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Giải:

Gọi phân số cần tìm là \(\dfrac{a}{b}\)

Ta có: b = a + 8 và \(\dfrac{a+3}{b-3}=\dfrac{5}{6}\)

\(\Leftrightarrow6a+18=5b-15\)

\(\Leftrightarrow5b-6a=33\)

\(\Leftrightarrow5a+40-6a=33\)

\(\Leftrightarrow40-a=33\)

\(\Leftrightarrow a=7\Leftrightarrow b=15\)

Vậy phân số cần tìm là \(\dfrac{7}{15}\)

Gọi tử là x

Mẫu là 99-x

Theo đề, ta có:

\(\dfrac{x}{99-x}=\dfrac{51}{136}=\dfrac{3}{8}\)

=>8x=297-3x

=>11x=297

=>x=17

Vậy: Phân só cần tìm là 17/82

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có \({Q_1} = 56;{Q_3} = 84\)

\({\Delta _Q} = {Q_3} - {Q_1} = 84 - 56 = 28\)

\({Q_1} - 1,5{\Delta _Q} = 56 - 1,5.28 = 14\)

\({Q_3} + 1,5.{\Delta _Q} = 84 - 1,5.28 = 126\)

Ta thấy 10 < 14 nên 10 là giá trị bất thường

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Số điểm mà năm vận động viên bóng rổ ghi được trong một trận đấu:

9   8   15   8   20

Số trung bình: \(\overline X = \dfrac{{9 + 8 + 15 + 8 + 20}}{5} = 12\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

8  8  9  15  20

Ta có n=5 là số lẻ nên trung vị là 9.

Mốt: Ta thấy số 8 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 9=> \({Q_2} = 9\).

+ Tìm \({Q_1}\)

Nửa số liệu bên trái là:

8  8

Trung vị của mẫu này là \(\dfrac{{8 + 8}}{2} = 8\)=>\({Q_1} = 8\)

+ Tìm \({Q_3}\)

Nửa số liệu bên phải là:

15  20

Trung vị của mẫu này là \(\dfrac{{15 + 20}}{2} = 17,5\)=>\({Q_3} = 17,5\)

Vậy số trung bình là 12, trung vị là 9 và mốt là 8, \({Q_1} = 8\), \({Q_3} = 17,5\)

b) Giá của một số loại giày (đơn vị nghìn đồng):

350  300  650  300  450  500  300  250

Số trung bình: \(\overline X ) \( = \dfrac{{350 + 300.3 + 650 + 450 + 500 + 250}}{8}\) \( = 387,5\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

250  300  300  300  350  450  500  650

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 300 và 350

=> Trung vị là \(\dfrac{{300 + 350}}{2} = 325\)

Mốt: Ta thấy số 300 là số có tần số cao nhất (xuất hiện 3 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 325=> \({Q_2} = 325\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

250  300  300  300

Trung vị của mẫu này là \(\dfrac{{300 + 300}}{2} = 300\)=>\({Q_1} = 300\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

350  450  500  650

Trung vị của mẫu này là \(\dfrac{{450 + 500}}{2} = 475\)=>\({Q_3} = 475\)

Vậy số trung bình là 387,5, trung vị là 325 và mốt là 300, \({Q_1} = 300\), \({Q_3} = 475\)

c) Số kênh được chiếu của một số hãng truyền hình cáp:

36  38  33  34  32  30  34  35

Số trung bình: \(\overline X = \dfrac{{36 + 38 + 33 + 34.2 + 32 + 30 + 35}}{8} = 34\)

Trung vị:

Sắp xếp theo thứ tự không giảm:

30  32  33  34  34  35  36  38

Ta có n=8 là số chẵn nên trung vị là trung bình cộng của hai số chính giữa.

Hai số chính giữa là 34 và 34

=> Trung vị là 34

Mốt: Ta thấy số 34 là số có tần số cao nhất (xuất hiện 2 lần)

Tứ phân vị:

+ Tìm \({Q_2}\)

Ta có trung vị là 34=> \({Q_2} = 34\).

+ Tìm \({Q_1}\)

Vì n chẵn nên nửa số liệu bên trái là:

30  32  33  34

Trung vị của mẫu này là \(\dfrac{{32 + 33}}{2} = 32,5\)=>\({Q_1} = 32,5\)

+ Tìm \({Q_3}\)

Vì n chẵn nên nửa số liệu bên phải là:

34  35  36  38

Trung vị của mẫu này là \(\dfrac{{35 + 36}}{2} = 35,5\)=>\({Q_3} = 35,5\)

Vậy số trung bình là 34, trung vị là 34 và mốt là 34, \({Q_1} = 32,5\), \({Q_3} = 35,5\)

Chú ý

Nếu n chẵn thì nửa số liệu bên trái (phải) \({Q_2}\) phải chứa cả \({Q_2}\)

9 tháng 11 2016

http://olm.vn/hoi-dap/question/646913.html

28 tháng 8 2019

Chọn C.

Bảng phân bố tần số - tần suất

Dựa vào bảng phân bố tần số; tần suất trên ta thấy có 3 lớp có tần suất không bé hơn 17,5% là lớp thứ 2;3 và lớp thứ 4.

24 tháng 5 2018

Từ dãy số liệu ta có bảng phân bố tần số - tần suất ghép lớp sau đây:

 

c) Cộng các tần suất của năm lớp [500;600), [600;700), [700;800), [800;900) và [900;1000) ta được . Đáp án là B.

11 tháng 6 2018

Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.

Do đó ta phải xét các phương án

- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.

- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.

- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.

Đáp án: C