Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm tắt nên bạn không hiểu chỗ nào thỉ hỏi lại nhé :)
Gọi vận tốc dự định là: a>0 (km/h)
Gọi thời gian dự định là: b>0 (h)
Theo bài ra ta có: \(\left\{{}\begin{matrix}AB=a.b\\AB=\left(a+5\right)\left(b-0,4\right)\\AB=\left(a-5\right)\left(b+0,5\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+5\right)\left(b-0,4\right)-ab=0\\\left(a-5\right)\left(b+0,5\right)-ab=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5b-0,4a-2=0\\0,5a-5b-2,5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=45\\b=4\end{matrix}\right.\)
=> \(AB=a.b=45.4=180\)
Vậy quãng đường AB là 180 km
Gọi thời gian và vận tốc lần lượt là a,b
Theo đề, ta có: (a-0,4)(b+5)=ab và (a+0,5)(b-5)=ab
=>5a-0,4b=2 và -5a+0,5b=2,5
=>a=4 và b=45
Gọi vận tốc dự định của ô tô là x ( km/h ; x > 0 )
=> Thời gian ô tô dự kiến đến B = 90/x ( giờ )
Thực tế vận tốc của ô tô = x+5 (km/h)
Khi đó thời gian ô tô đến B trên thực tế = 90/x+5 + 1/5 ( giờ )
Theo bài ra ta có phương trình : \(\frac{90}{x}=\frac{90}{x+5}+\frac{1}{5}\)
<=> \(\frac{1}{x}-\frac{1}{x+5}=\frac{1}{450}\)<=> \(\frac{5}{x\left(x+5\right)}=\frac{1}{450}\)
=> 2250 = x2 + 5x
<=> x2 + 5x - 2250 = 0
Δ = b2 - 4ac = (5)2 - 4.(-2250) = 9025
Δ > 0, áp dụng công thức nghiệm thu được x1 = 45 (tm) ; x2 = -50 (ktm)
Vậy ...
\(96ph=\dfrac{8}{5}\left(h\right)\)
Gọi vận tốc dự định là v>10 (km/h) và thời gian dự định là t>2 (giờ)
Quãng đường AB: \(S=v.t\)
Quãng đường nếu vận tốc giảm 10km/h: \(S=\left(v-10\right)\left(t+\dfrac{8}{5}\right)\)
Quãng đường nếu vận tốc tăng 20km/h: \(S=\left(v+20\right)\left(t-2\right)\)
Do độ dài quãng đường là ko đổi nên ta có hệ:
\(\left\{{}\begin{matrix}\left(v-10\right)\left(t+\dfrac{8}{5}\right)=vt\\\left(v+20\right)\left(t-2\right)=vt\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{5}v-10t=16\\-2v+20t=40\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v=60\\t=8\end{matrix}\right.\)
Độ dài quãng đường: \(S=60.8=480\left(km\right)\)
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Đổi: \(1h24'=1,4h\).
Gọi thời gian dự định là \(x\left(h\right);x>1,4\).
vận tốc dự định là \(y\left(km/h\right),y>5\).
Quãng đường AB là: \(xy\left(km\right)\).
Nếu vận tốc tăng \(10km/h\)thì vận tốc là \(y+10\left(km/h\right)\), thời gian đi hết quãng đường khi đó là \(x-1,4\left(h\right)\).
Nếu vận tốc giảm \(5km/h\)thì vận tốc là \(y-5\left(km/h\right)\), thời gian đi hết quãng đường khi đó là: \(x+1\left(h\right)\).
Ta có hệ phương trình:
\(\hept{\begin{cases}\left(x-1,4\right)\left(y+10\right)=xy\\\left(x+1\right)\left(y-5\right)=xy\end{cases}}\Leftrightarrow\hept{\begin{cases}10x-1,4y-14=0\\-5x+y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-1,4y=14\\-10x+2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}0,6y=24\\x=\frac{14+1,4y}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=40\end{cases}}\)(thỏa mãn)
Vậy vận tốc dự định là \(40km/h\), quãng đường AB là \(40.7=280km\).